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Preface to the Second Edition

The first edition of this book was written on purpose in a very concise, booklet
format, to make it easily accessible to a broad interdisciplinary readership of science
students and research scientists with an interest in the theoretical modeling of
complex systems. Readers were assumed to typically have some bachelor level
background in mathematical methods, but no a priori knowledge in statistical
physics.

A few years after this first edition, it has appeared relevant to significantly
expand it to a full—though still relatively concise—book format in order to include
a number of important topics that were not covered in the first edition, thereby
raising the number of chapters from three to six. These new topics include
non-conserved particles, evolutionary population dynamics, networks (Chap. 4),
properties of both individual and coupled simple dynamical systems (Chap. 5), as
well as probabilistic issues like convergence theorems for the sum and the extreme
values of a large set of random variables (Chap. 6). A few short appendices have
also been included, notably to give some technical hints on how to perform simple
stochastic simulations in practice.

In addition to these new chapters, the first three chapters have also been sig-
nificantly updated. In Chap. 1, the discussions of phase transitions and of disordered
systems have been slightly expanded. The most important changes in these pre-
viously existing chapters concern Chap. 2. The Langevin and Fokker–Planck
equations are now presented in separate subsections, including brief discussions
about the case of multiplicative noise, the case of more than one degree of freedom,
and the Kramers–Moyal expansion. The discussion of anomalous diffusion now
focuses on heuristic arguments, while the presentation of the Generalized Central
Limit Theorem has been postponed to Chap. 6. Chapter 2 then ends with a dis-
cussion of several aspects of the relaxation to equilibrium. Finally, Chap. 3 has also
undergone some changes, since the presentation of the Kuramoto model has been
deferred to Chap. 5, in the context of deterministic systems. The remaining material
of Chap. 3 has then been expanded, with discussions of the Schelling model with
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two types of agents, of the dissipative Zero Range Process, and of assemblies of
active particles with nematic symmetries.

Although the size of this second edition is more than twice the size of the first
one, I have tried to keep the original spirit of the book, so that it could remain
accessible to a broad, non-specialized, readership. The presentations of all topics
are limited to concise introductions, and are kept to a relatively elementary level—
not avoiding mathematics, though. The reader interested in learning more on a
specific topic is then invited to look at other sources, like specialized monographs
or review articles.

Grenoble, France Eric Bertin
May 2016

vi Preface to the Second Edition



Preface to the First Edition

In recent years, statistical physics started raising the interest of a broad community
of researchers in the field of complex system sciences, ranging from biology to
social sciences, economics or computer sciences. More generally, a growing
number of graduate students and researchers feel the need for learning some basics
concepts and questions coming from other disciplines, leading for instance to the
organization of recurrent interdisciplinary summer schools.

The present booklet is partly based on the introductory lecture on statistical
physics given at the French Summer School on Complex Systems held both in
Lyon and Paris during the summers 2008 and 2009, and jointly organized by two
French Complex Systems Institutes, the “Institut des Systèmes Complexes Paris Ile
de France” (ISC-PIF) and the “Institut Rhône-Alpin des Systèmes Complexes”
(IXXI). This introductory lecture was aimed at providing the participants with a
basic knowledge of the concepts and methods of statistical physics so that they
could later on follow more advanced lectures on diverse topics in the field of
complex systems. The lecture has been further extended in the framework of the
second year of Master in “Complex Systems Modelling” of the Ecole Normale
Supérieure de Lyon and Université Lyon 1, whose courses take place at IXXI.

It is a pleasure to thank Guillaume Beslon, Tommaso Roscilde and Sébastian
Grauwin, who were also involved in some of the lectures mentioned above, as well
as Pablo Jensen for his efforts in setting up an interdisciplinary Master course on
complex systems, and for the fruitful collaboration we had over the last years.

Lyon, France Eric Bertin
June 2011
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Introduction

Generally speaking, the goals of statistical physics can be summarized as follows:
on the one hand to study systems composed of a large number of interacting ‘units’,
and on the other hand to predict the macroscopic (or collective) behavior of the
system considered from the microscopic laws ruling the dynamics of the individual
‘units’. These two goals are, to some extent, also shared by what is nowadays called
‘complex systems science’. However, the specificity of statistical physics is that:

• The ‘units’ considered are in most cases atoms or molecules, for which the
individual microscopic laws are known from fundamental physical theories—at
variance with other fields like social sciences for example, where little is known
about the quantitative behavior of individuals.

• These atoms, or molecules, are often all of the same type, or at most of a few
different types—in contrast to biological or social systems for instance, where
the individual ‘units’ may all differ, or at least belong to a large number of
different types.

For these reasons, systems studied in the framework of statistical physics may be
considered as among the simplest examples of complex systems. One further
specificity of statistical physics with respect to other sciences aiming at describing
the collective behavior of complex systems is that it allows for a rather
well-developed mathematical treatment.

The present book is divided into six chapters. Chapter 1 deals with equilibrium
statistical physics, trying to expose in a concise way the main concepts of this
theory, and paying specific attention to those concepts that could be more generally
relevant to complex system sciences. Of particular interest is on the one hand the
phenomenon of phase transition, and on the other hand the study of disordered
systems. Chapter 2 mainly aims at describing dynamical effects like diffusion or
relaxation, in the framework of Markovian stochastic processes. A simple
description of the formalism is provided, together with a discussion of random walk
processes, as well as Langevin and Fokker–Planck equations. Anomalous diffusion
processes are also briefly described, as well as some generic properties of the
relaxation of stochastic processes to equilibrium.
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Chapter 3 deals with the generic issue of the statistical description of large
systems of interacting ‘units’ under nonequilibrium conditions. These nonequilib-
rium units may be for instance particles driven by an external field, social agents
moving from one flat to another in a city, or self-propelled particles representing in
a schematic way bacteria or self-driven colloids. Their description relies on the
adaptation of different techniques borrowed from standard statistical physics,
including mappings to effective equilibrium systems, Boltzmann approaches (a
technique early developed in statistical physics to characterize the dynamics of
gases) for systems interacting through binary collisions, or exact solutions when
available.

Chapter 4 aims at going beyond the case of stable interacting units, by inves-
tigating several possible extensions. The first one is the case of reaction-diffusion
processes, in which particles can be created and annihilated, leading to a peculiar
type of phase transitions called absorbing phase transitions. The case of population
dynamics, in connection with the process of biological evolution, is also presented.
The chapter ends with a brief presentation of the statistics of random networks.

After these three chapters dedicated to stochastic processes, Chap. 5 presents
some elementary notions on dynamical systems, concerning in particular the fixed
points and their stability, the more general concept of attractor, as well as the notion
of bifurcation. A discussion on the comparison between deterministic and stochastic
dynamics is provided, in connection with coarse-graining issues. Then, the case of
globally coupled population of low-dimensional dynamical systems is investigated
through the analysis of two different cases, the restabilization of unstable fixed
points by the coupling and the synchronization transition in the Kuramoto model of
coupled oscillators.

Finally, Chap. 6 presents some basic results of probability theory which are of
high interest in a statistical physics context. This chapter deals in particular with the
statistics of sums of random variables (Law of Large Numbers, standard and
generalized Central Limit Theorems), the statistics of extreme values and records,
and the statistics of very rare events as described by the large deviation formalism.

xiv Introduction
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Chapter 1
Equilibrium Statistical Physics

Systems composed of many particles involve a very large number of degrees of
freedom, and it is most often uninteresting—not to say hopeless—to try to describe
in a detailed way the microscopic state of the system. The aim of statistical physics
is rather to restrict the description of the system to a few relevant macroscopic
observables, and to predict the average values of these observables, or the relations
between them. A standard formalism, called "equilibrium statistical physics”, has
been developed for systems of physical particles having reached a statistical steady
state in the absence of external driving (like heat flux or shearing forces for instance).

In this first part, we shall discuss some of the fundamentals of equilibrium sta-
tistical physics. Sect. 1.1 describes the elementary mechanical notions necessary to
describe a system of physical particles. Section 1.2 introduces the basic statistical
notions and fundamental postulates required to describe in a statistical way a system
that exchanges no energy with its environment. The effect of the environment is then
taken into account in Sect. 1.3, in the case where the environment does not generate
any sustained energy flux in the system. Applications of this general formalism to the
description of collective phenomena and phase transitions are presented in Sect. 1.4.
Finally, the influence of disorder and heterogeneities, which are relevant in physical
systems, but are also expected to play an essential role in many other types of com-
plex systems, is briefly discussed in Sect. 1.5. For further reading on these topics
related to equilibrium statistical physics (especially for Sects. 1.2–1.4), we refer the
reader to standard textbooks, like e.g. Refs. [1–4].

1.1 Microscopic Dynamics of a Physical System

1.1.1 Conservative Dynamics

In the framework of statistical physics, an important type of dynamics is the
so-called conservative dynamics in which energy is conserved, meaning that

© Springer International Publishing Switzerland 2016
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2 1 Equilibrium Statistical Physics

friction forces are absent, or can be neglected. As an elementary example, consider
a particle constrained to move on a one-dimensional horizontal axis x , and attached
to a spring, the latter being pinned to a rigid wall. We consider the position x(t) of
the particle at time t , as well as its velocity v(t). The force F exerted by the spring
on the particle is given by

F = −k(x − x0), (1.1)

where x0 corresponds to the position of repose of the particle, for which the force
vanishes. For convenience, we shall in the following choose the origin of the x axis
such that x0 = 0.

From the basic laws of classical mechanics, the motion of the particle is described
by the evolution equation:

m
dv

dt
= F (1.2)

where m is the mass of the particle. We have neglected all friction forces, so that the
force exerted by the spring is the only horizontal force (the gravity force, as well as
the reaction force exerted by the support, do not have horizontal components in the
absence of friction). In terms of x variable, the equation of motion (1.2) reads

m
d2x

dt2
= −kx . (1.3)

The generic solution of this equation is

x(t) = A cos(ωt + φ), ω =
√

k

m
. (1.4)

The constants A and φ are determined by the initial conditions, namely the position
and velocity at time t = 0.

The above dynamics can be reformulated in the so-called Hamiltonian formalism.
Let us introduce the momentum p = mv, and the kinetic energy Ec = 1

2mv2. In
terms of momentum, the kinetic energy reads Ec = p2/2m. The potential energy U
of the spring, defined by F = −dU/dx , is given by U = 1

2kx
2. The Hamiltonian

H(x, p) is defined as
H(x, p) = Ec(p) +U (x). (1.5)

In the present case, this definition yields

H(x, p) = p2

2m
+ 1

2
kx2. (1.6)

In the Hamiltonian formulation, the equations of motion read1

1For a more detailed introduction to the Hamiltonian formalism, see, e.g., Ref. [5].



1.1 Microscopic Dynamics of a Physical System 3

dx

dt
= ∂H

∂ p
,

dp

dt
= −∂H

∂x
. (1.7)

On the example of the particle attached to a spring, these equations give

dx

dt
= p

m
,

dp

dt
= −kx, (1.8)

from which one recovers Eq. (1.3) by eliminating p. Hence it is seen on the above
example that the Hamiltonian formalism is equivalent to the standard law of motion
(1.2).

1.1.2 Properties of the Hamiltonian Formulation

Energy conservation.The Hamiltonian formulation has interesting properties, namely
energy conservation and time-reversal invariance. We define the total energy E(t) as
E(t) = H(x(t), p(t)) = Ec(p(t))+U (x(t)). It is easily shown that the total energy
is conserved during the evolution of the system2

dE

dt
= ∂H

∂x

dx

dt
+ ∂H

∂ p

dp

dt
. (1.9)

Using Eq. (1.7), one has

dE

dt
= ∂H

∂x

∂H

∂ p
+ ∂H

∂ p

(
−∂H

∂x

)
= 0, (1.10)

so that the energy E is conserved. This is confirmed by a direct calculation on the
example of the particle attached to a spring:

E(t) = p(t)2

2m
+ 1

2
kx(t)2 (1.11)

= 1

2m
m2ω2A2 sin2(ωt + φ) + 1

2
k A2 cos2(ωt + φ).

2The concept of energy, introduced here on a specific example, plays a fundamental role in physics.
Although any precise definition of the energy is necessarily formal and abstract, the notion of energy
can be thought of intuitively as a quantity that can take very different forms (kinetic, electromagnetic
or gravitational energy, but also internal energy exchanged through heat transfers) in such a way that
the total amount of energy remains constant. Hence an important issue is to describe how energy is
transfered from one form to another. For instance, in the case of the particle attached to a spring, the
kinetic energy Ec and potential energy U of the spring are continuously exchanged, in a reversible
manner. In the presence of friction forces, kinetic energy would also be progressively converted, in
an irreversible way, into internal energy, thus raising the temperature of the system.
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Given that ω2 = k/m, one finds

E(t) = 1

2
k A2 (

sin2(ωt + φ) + cos2(ωt + φ)
) = 1

2
k A2 (1.12)

which is indeed a constant.

Time reversal invariance. Another important property of the Hamiltonian dynamics
is its time reversibility. To illustrate the meaning of time reversibility, let us imagine
that we film the motion of the particle with a camera, and that we project it backward.
If the backward motion is also a possible motion, meaning that nothing is unphysical
in the backward projected movie, then the equations of motion are time-reversible.

More formally, we consider the trajectory x(t), 0 ≤ t ≤ t0, and define the reversed
time t ′ = t0 − t . Starting from the equations of motion (1.7) expressed with t , x and
p, time reversal is implemented by replacing t with t0 − t ′, x with x ′ and p with −p′,
yielding

− dx

dt ′
= −∂H

∂ p′ ,
dp′

dt ′
= −∂H

∂x ′ . (1.13)

Changing the overall sign in the first equation, one recovers Eq. (1.7) for the primed
variables, meaning that the time-reversed trajectory is also a physical trajectory.

Note that time-reversibility holds only as long as friction forces are neglected.
The latter break time reversal invariance, and this explains why our everyday-life
experience seems to contradict time reversal invariance. For instance, when a glass
falls down onto the floor and breaks into pieces, it is hard to believe that the reverse
trajectory, in which pieces would come together and the glass would jump onto
the table, is also a possible trajectory, as nobody has ever seen this phenomenon
occur. In order to reconcile macroscopic irreversibility and microscopic reversibility
of trajectories, the point of view of statistical physics is to consider that the reverse
trajectory is possible, but has a very small probability to occur as only very few initial
conditions could lead to this trajectory. So in practice, the corresponding trajectory
is never observed.

Phase-space representation. Finally, let us mention that it is often convenient to
consider the Hamiltonian dynamics as occuring in an abstract space called ‘phase
space’ rather than in real space. Physical space is described in the above example by
the coordinate x . The equations of motion (1.7) allow the position x and momentum
p of the particle to be determined at any time once the initial position and momentum
are known. So it is interesting to introduce an abstract representation space containing
both position and momentum. In this example, it is a two-dimensional space, but it
could be of higher dimension in more general situations. This representation space
is often called “phase space”. For the particle attached to the spring, the trajectories
in this phase space are ellipses. Rescaling the coordinates in an appropriate way,
one can transform the ellipse into a circle, and the energy can be identified with the
square of the radius of the circle. To illustrate this property, let us define the new
phase-space coordinates X and Y as
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X =
√
k

2
x, Y = p√

2m
. (1.14)

Then the energy E can be written as

E = p2

2m
+ 1

2
kx2 = X2 + Y 2. (1.15)

As the energy is fixed, the trajectory of the particle is a circle of radius
√
E in the

(X,Y )-plane.

1.1.3 Many-Particle System

In a more general situation, a physical system is composed of N particles in a 3-
dimensional space. The position of particle i is described by a vector xi , and its
velocity by vi , i = 1, . . . , N . In the Hamiltonian formalism, it is often convenient to
introduce generalized coordinates q j and momenta p j which are scalar quantities,
with j = 1, . . . , 3N : (q1, q2, q3) are the components of the vector x1 describing
the position of particle 1, (q4, q5, q6) are the component of x2, and so on. Simi-
larly, (p1, p2, p3) are the components of the momentum vector mv1 of particle 1,
(p4, p5, p6) are the components of mv2, etc. With these notations, the Hamiltonian
of the N -particle system is defined as

H(q1, . . . , q3N , p1, . . . , p3N ) =
3N∑
j=1

p2
j

2m
+U (q1, . . . , q3N ). (1.16)

The first term in the Hamiltonian is the kinetic energy, and the last one is the potential
(or interaction) energy. The equations of motion read

dq j

dt
= ∂H

∂ p j
,

dp j

dt
= −∂H

∂q j
, j = 1, . . . , 3N . (1.17)

The properties of energy conservation and time-reversal invariance also hold in this
more general formulation, and are derived in the same way as above. As an illustra-
tion, typical examples of interaction energy U include

• U = 0: case of free particles.
• U = −∑N

i=1 hixi : particles interacting with an external field, for instance the
gravity field, or an electric field.

• U = ∑
i �=i ′ V (xi − xi ′): pair interaction potential.
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1.1.4 Case of Discrete Variables: Spin Models

As a simplified picture, a spin may be thought of as a magnetization S associated
to an atom. The dynamics of spins is ruled by quantum mechanics (the theory that
governs particles at the atomic scale), which is outside the scope of the present book.
However, in some situations, the configuration of a spin system can be represented in
a simplified way as a set of binary “spin variables” si = ±1, and the corresponding
energy takes the form

E = −J
∑
〈i, j〉

si s j − h
N∑
i=1

si . (1.18)

The parameter J is the coupling constant between spins, while h is the external mag-
netic field. The first sum corresponds to a sum over nearest neighbor sites on a lattice,
but other types of interaction could be considered. This model is called the Ising
model. It provides a qualitative description of the phenomenon of ferromagnetism
observed in metals like iron, in which a spontaneous macroscopic magnetization
appears below a certain critical temperature. In addition, the Ising model turns out
to be very useful to illustrate some important concepts of statistical physics.

In what follows, we shall consider the words “energy” and “Hamiltonian” as
synonyms, and the corresponding notations E and H as equivalent.

1.2 Statistical Description of an Isolated System at
Equilibrium

1.2.1 Notion of Statistical Description: A Toy Model

Let us consider a toy model in which a particle is moving on a ring with L sites.
Time is discretized, meaning that for instance every second the particle moves to
the next site. The motion is purely deterministic: given the position at time t = 0,
one can compute the position i(t) at any later time. Now assume that there is an
observable εi on each site i . It could be for instance the height of the site, or any
arbitrary observable that characterizes the state of the particle when it is at site i .

A natural question would be to know what the average value

〈ε〉 = 1

T

T∑
t=1

εi(t) (1.19)

is after a large observation time T . Two different approaches to this question can be
proposed:

• Simulate the dynamics of the model on a computer, and measure directly 〈ε〉.



1.2 Statistical Description of an Isolated System at Equilibrium 7

• Use the concept of probability as a shortcut, and write

〈ε〉 =
L∑

i=1

Piεi (1.20)

where the probability Pi to be on site i is defined as

Pi = time spent on site i

total time T
, (1.21)

namely the fraction of time spent on site i .

The probability Pi can be calculated or measured by simulating the dynamics, but it
can also be estimated directly: if the particle has turned a lot of times around the ring,
the fraction of time spent on each site is the same, Pi = 1/L . Hence all positions of
the particle are equiprobable, and the average value 〈ε〉 is obtained as a flat average
over all sites. Of course, more complicated situations may occur, and the concept
of probability remains useful beyond the simple equiprobability situation described
above.

1.2.2 Fondamental Postulate of Equilibrium Statistical
Physics

We consider a physical system composed of N particles. The microscopic config-
uration of the system is described by (xi ,pi = mvi ), i = 1, . . . , N , or si = ±1,
i = 1, . . . , N , for spin systems.

The total energy E of the system, given for instance for systems of identical
particles by

E =
N∑
i=1

p2
i

2m
+U (x1, . . . , xN ), (1.22)

or for spins systems by

E = −J
∑
〈i, j〉

si s j − h
N∑
i=1

si , (1.23)

is constant as a function of time (or may vary within a tiny interval [E, E + δE],
in particular for spin systems). Accordingly, starting from an initial condition with
energy E , the system can only visit configurations with the same energy. In the
absence of further information, it is legitimate to postulate that all configurations
with the same energy as the initial one have the same probability to be visited. This
leads us to the fondamental postulate of equilibrium statistical physics:
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Given an energy E , all configurations with energy E have equal nonzero probabili-
ties. Other configurations have zero probability.
The corresponding probability distribution is called the microcanonical distribution
or microcanonical ensemble for historical reasons (a probability distribution can be
thought of as describing an infinite set of copies—an ensemble—of a given system).

A quantity that plays an important role is the “volume” �(E) occupied in phase-
space by all configurations with energy E . For systems with continuous degrees of
freedom, �(E) is the area of the hypersurface defined by fixing the energy E . For
systems with discrete configurations (spins), �(E) is the number of configurations
with energy E . The Boltzmann entropy is defined as

S(E) = kB ln �(E), (1.24)

where kB = 1.38 × 10−23 J/K is the Boltzmann constant. This constant has been
introduced both for historical and practical reasons, but from a theoretical viewpoint,
its specific value plays no role, so that we shall set it to kB = 1 in the following (this
could be done for instance by working with specific units of temperature and energy
such that kB = 1 in these units).

The notion of entropy is a cornerstone of statistical physics. First introduced in the
context of thermodynamics (the theory of the balance between mechanical energy
transfers and heat exchanges), entropy was later on given a microscopic interpretation
in the framework of statistical physics. Basically, entropy is a measure of the number
of available microscopic configurations compatible with the macroscopic constraints.
More intuitively, entropy can be interpreted as a measure of ‘disorder’ (disordered
macroscopic states often correspond to a larger number of microscopic configurations
than macroscopically ordered states), though the correspondence between the two
notions is not necessarily straightforward and may fail in some cases like in the
liquid-solid transition of hard spheres. Another popular interpretation, in relation to
information theory, is to consider entropy as a measure of the lack of information on
the system: the larger the number of accessible microscopic configurations, the less
information is available on the system (in an extreme case, if the system can be with
equal probability in any microscopic configuration, one has no information on the
state of the system).

Let us now give a few simple examples of computation of the entropy.

1.2.3 Computation of �(E) and S(E): Some Simple
Examples

Paramagnetic spin model. We consider a model of independent spins, interacting
only with a uniform external field. The corresponding energy is given by

E = −h
N∑
i=1

si , si = ±1. (1.25)
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The phase space (or here simply configuration space) is given by the list of values
(s1, . . . , sN ). The question is to know how many configurations there are with a given
energy E . In this specific example, it is easily seen that fixing the energy E amounts
to fixing the magnetization M = ∑N

i=1 si . Let us denote as N+ the number of spins
with value +1 (‘up’ spins). The magnetization is given by M = N+ − (N − N+) =
2N+−N , so that fixing M is in turn equivalent to fixing N+. From basic combinatorial
arguments, the number of configurations with a given number of ‘up’ spins is given by

� = N !
N+!(N − N+)! . (1.26)

Using the relation

N+ = 1

2

(
N − E

h

)
, (1.27)

one can express � as a function of E :

�(E) = N ![
1
2 (N − E/h)

]! [
1
2 (N + E/h)

]! . (1.28)

The entropy S(E) is given by

S(E) = ln �(E)

= ln N ! − ln

[
1

2

(
N − E

h

)]
! − ln

[
1

2

(
N + E

h

)]
! (1.29)

Using Stirling’s approximation, valid for large N

ln N ! ≈ N ln N − N , (1.30)

one finds

S(E) = N ln N − N + E/h

2
ln

N + E/h

2
− N − E/h

2
ln

N − E/h

2
. (1.31)

Perfect gas of independent particles.As a second example, we consider a gas of inde-
pendent particles confined into a cubic container of volume V = L3. The generalized
coordinates q j satisfy the constraints

0 ≤ q j ≤ L , j = 1, . . . , L . (1.32)

The energy E comes only from the kinetic contribution:
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E =
3N∑
j=1

p2
j

2m
. (1.33)

The accessible volume in phase space is the product of the accessible volume for
each particle, times the area of the hypersphere of radius

√
2mE , embedded in a

3N-dimensional space. The area of the hypersphere of radius R in a D-dimensional
space is

AD(R) = DπD/2

�
(
D
2 + 1

) RD−1, (1.34)

where �(x) = ∫ ∞
0 dt t x−1e−t is the Euler Gamma function (a generalization of the

factorial to real values, satisfying �(n) = (n − 1)! for integer n ≥ 1). Hence the
accessible volume �V (E) is given by

�V (E) = 3Nπ3N/2

�
(

3N
2 + 1

) √
2m

3N−1
V N E

3N−1
2 . (1.35)

The corresponding entropy reads, assuming N � 1,

SV (E) = ln �(E) = S0 + 3N

2
ln E + N ln V (1.36)

with

S0 = ln

(
3Nπ3N/2

�
(

3N
2 + 1

)√
2m

3N

)
. (1.37)

Note that in principle, some corrections need to be included to take into account
quantum effects, namely the fact that quantum particles are undistinguishable. This
allows in particular �(E) to be made dimensionless, thus rendering the entropy
independent of the system of units chosen. Quantum effects are also important in
order to recover the extensivity of the entropy, that is, the fact that the entropy is
proportional to the number N of particles. In the present form, N ln N terms are
present, making the entropy grow faster than the system size. This is related to the
so-called Gibbs paradox. However, we shall not describe these effects in more details
here, and refer the reader to standard textbooks [1–4].

1.2.4 Distribution of Energy Over Subsystems and Statistical
Temperature

Let us consider an isolated system, with fixed energy and number of particles. We
then imagine that the system is partitioned into two subsystems S1 and S2, the
two subsystems being separated by a wall which allows energy exchanges, but not
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exchanges of matter. The total energy of the system E = E1 + E2 is fixed, but the
energies E1 and E2 fluctuate due to thermal exchanges.

For a fixed energy E , let us evaluate the number �(E1|E) of configurations of
the system such that the energy of S1 has a given value E1. In the absence of long-
range forces in the system, the two subsystems can be considered as statistically
independent (apart from the total energy constraint), leading to

�(E1|E) = �1(E1)�2(E − E1), (1.38)

where �k(Ek) is the number of configurations of Sk .
The most probable value E∗

1 of the energy E1 maximizes by definition �(E1|E),
or equivalently ln �(E1|E):

∂

∂E1

∣∣∣
E∗

1

ln �(E1|E) = 0. (1.39)

Combining Eqs. (1.38) and (1.39), one finds

∂ ln �1

∂E1

∣∣∣
E∗

1

= ∂ ln �2

∂E2

∣∣∣
E∗

2 =E−E∗
1

. (1.40)

Thus it turns out that two quantities defined independently in each subsystem are
equal at equilibrium. Namely, defining

βk ≡ ∂ ln �k

∂Ek

∣∣∣
E∗
k

, k = 1, 2, (1.41)

one has β1 = β2. This is the reason why the quantity βk is called the statistical
temperature of Sk . In addition, it can be shown that for large systems, the common
value of β1 and β2 is also equal to

β = ∂S

∂E
(1.42)

computed for the global isolated system.
To identify the precise link between β and the standard thermodynamic tempera-

ture, we notice that in thermodynamics, one has for a system that exchanges no work
with its environment:

dE = TdS, (1.43)

which indicates that β = 1/T (we recall that we have set kB = 1). This is further
confirmed on the example of the perfect gas, for which one finds using Eq. (1.36)

β ≡ ∂S

∂E
= 3N

2E
, (1.44)
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or equivalently

E = 3N

2β
. (1.45)

Besides, one has from the kinetic theory of gases

E = 3

2
NT (1.46)

(which is nothing but equipartition of energy), leading again to the identification
β = 1/T . Hence, in the microcanonical ensemble, one generically defines temper-
ature T through the relation

1

T
= ∂S

∂E
. (1.47)

We now further illustrate this relation on the example of the paramagnetic crystal
that we already encountered earlier. From Eq. (1.31), one has

1

T
= ∂S

∂E
= 1

2h
ln

N − E/h

N + E/h
. (1.48)

This last equation can be inverted to express the energy E as a function of temperature,
yielding

E = −Nh tanh
h

T
. (1.49)

This relation has been obtained by noticing that x = tanh y is equivalent to

y = 1

2
ln

(
1 + x

1 − x

)
. (1.50)

In addition, from the relation E = −Mh, where M = ∑N
i=1 si is the total magneti-

zation, one obtains as a byproduct

M = N tanh
h

T
. (1.51)

1.3 Equilibrium System in Contact with Its Environment

1.3.1 Exchanges of Energy

Realistic systems are most often not isolated, but they rather exchange energy with
their environment. A natural idea is then to describe the system S of interest as a
macroscopic subsystem of a large isolated systemS∪R, whereR is the environment,
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or energy reservoir. The total energy Etot = E + ER is fixed. A configuration Ctot of
the total system can be written as Ctot = (C,CR), where C is a configuration of S
andCR is a configuration ofR. The total systemS∪R is isolated and at equilibrium,
so that it can be described within the macrocanonical framework:

Ptot(Ctot) = 1

�tot(Etot)
, Ctot = (C,CR). (1.52)

To obtain the probability of a configuration C of S, one needs to sum Ptot(Ctot) over
all configurations CR of R compatible with the total energy Etot, namely

P(C) =
∑

CR:ER=Etot−E(C)

Ptot(C,CR) = �R(Etot − E(C))

�tot(Etot)
. (1.53)

We introduce the entropy of the reservoir SR(ER) = ln �R(ER). Under the assump-
tion that E(C) � Etot, one has

SR(Etot − E(C)) ≈ SR(Etot) − E(C)
∂SR
∂ER

∣∣∣
Etot

. (1.54)

One also has
∂SR
∂ER

∣∣∣
Etot

≈ ∂SR
∂ER

∣∣∣
E∗
R

= 1

T
(1.55)

where T is the temperature of the reservoir. Altogether, we have

P(C) = �R(Etot)

�tot(Etot)
e−E(C)/T . (1.56)

Note that the prefactor �R/�tot depends on the total energy Etot, while we would
like P(C) to depend only on the energy E of the system considered. This problem can
however be bypassed by noticing that the distribution P(C) should be normalized
to unity, namely,

∑
C P(C) = 1. Introducing the partition function

Z =
∑
C

e−E(C)/T , (1.57)

one can then eventually rewrite the distribution P(C) in the form

P(C) = 1

Z
e−E(C)/T , (1.58)

which is the standard form of the canonical distribution.
The partition function Z is a useful tool in statistical physics. For instance, the

average energy 〈E〉 can be easily computed from Z :
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〈E〉 =
∑
C

P(C) E(C) =
∑
C

E(C)
1

Z
e−E(C)/T

= 1

Z

∑
C

E(C) e−βE(C)

= − 1

Z

∂Z

∂β
= −∂ ln Z

∂β
. (1.59)

Instead of Z , one may also use the “free energy” F defined as

F = −T ln Z . (1.60)

Let us give a simple example of computation of Z , in the case of the paramagnetic
spin model. The partition function is given by

Z =
∑

{si=±1}
e−βE({si }), (1.61)

with E({si }) = −h
∑N

i=1 si . Hence one has

Z =
∑

{si=±1}
eβh

∑N
i=1 si

=
∑

{si=±1}

N∏
i=1

eβhsi =
N∏
i=1

( ∑
s=±1

eβhs

)
(1.62)

so that one finds
Z = (

eβh + e−βh
)N

. (1.63)

Turning to the average energy, one has

〈E〉 = −∂ ln Z

∂β
= −N

∂

∂β
ln

(
eβh + e−βh

)
, (1.64)

so that one obtains, recalling that β = 1/T ,

〈E〉 = −Nh tanh
h

T
. (1.65)

It is interesting to note that the above equation has exactly the same form as Eq. (1.49),
provided that one replaces E , which is fixed in the microcanonical ensemble, by
its average value 〈E〉 in the canonical ensemble. This property is an example of a
general property called the “equivalence of ensembles”: in the limit of large systems,
the relations between macroscopic quantities are the same in the different statistical
ensembles, regardless of which quantity is fixed and which one is fluctuating through
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exchanges with a reservoir. The interpretation of this important property is basically
that fluctuating observables actually have very small relative fluctuations for large
system sizes. This property is deeply related to the Law of Large Numbers and to the
Central Limit Theorem—see Chap. 6. Indeed, the relative fluctuations (quantified by
the standard deviation normalized by the number of terms) of a sum of independent
and identically distributed random variables go to zero when the number of terms
in the sum goes to infinity. Note that the equivalence of ensembles generally breaks
down in the presence of long-range interactions in the systems.

Another example where the computation of Z is straightforward is the perfect
gas. In this case, one has

Z =
∫ L

0
dq1 . . .

∫ L

0
dq3N

∫ ∞

−∞
dp1 . . .

∫ ∞

−∞
dp3N e−β

∑3N
j=1 p2

j /2m

= L3N
3N∏
j=1

∫ ∞

−∞
dp j e

−β p2
j /2m

= V N

(∫ ∞

−∞
dp e−β p2/2m

)3N

. (1.66)

Given that ∫ ∞

−∞
dp e−β p2/2m =

√
2πm

β
, (1.67)

one finds

Z = V N

(
2πm

β

) 3N
2

. (1.68)

Computing the average energy leads to

〈E〉 = −∂ ln Z

∂β
= 3N

2β
= 3

2
NT (1.69)

yielding another example of ensemble equivalence, as this result has the same form
as Eq. (1.45). Equation (1.69) is also an example of the general relation of energy
equipartition, valid for all quadratic degrees of freedom. More precisely, the equipar-
tition relation states that, in the canonical ensemble, any individual degree of freedom
x with a quadratic energy 1

2λx2 has an average energy

〈1

2
λx2〉 = 1

2
kBT , (1.70)

where we have temporarily reintroduced the Boltzmann constant kB (otherwise set
to kB = 1) to comply with standard formulations.

http://dx.doi.org/10.1007/978-3-319-42340-1_6
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1.3.2 Canonical Entropy

As we have seen above, the microcanonical entropy is defined as S(E) = ln �(E).
This definition is clearly related to the equiprobability of accessible microscopic
configurations, since it is based on a counting of accessible configurations. A natural
question is then to know how to define the entropy in more general situations. A
generic definition of entropy has appeared in information theory, namely:

S = −
∑
C

P(C) ln P(C) (1.71)

where the sum is over all accessible configurations of the system. This entropy is
called the Boltzmann-Gibbs, von Neumann or Shannon entropy depending on the
context. This definition of entropy is moreover consistent with the microcanonical
one: if P(C) = 1/�(E) for configurations of energy E , and P(C) = 0 otherwise,
one finds:

S = −
∑

C :E(C)=E

1

�(E)
ln

1

�(E)
= ln �(E). (1.72)

In this general framework, the canonical entropy reads

Scan = −
∑
C

Pcan(C) ln Pcan(C)

=
∑
C

1

Z
e−βE(C) (ln Z + βE(C))

= ln Z + β〈E〉. (1.73)

Recalling that the free energy F is defined as F = −T ln Z , one thus has
T S = −F + 〈E〉, which is nothing but the well-known relation F = 〈E〉 − T S.
Another standard thermodynamic relation may be found using 〈E〉 = −∂ ln Z/∂β:

S = ln Z − β
∂ ln Z

∂β

= ln Z + T
∂ ln Z

∂T

= ∂

∂T
(T ln Z) (1.74)

so that one finds the standard thermodynamic relation

Scan = −∂F

∂T
. (1.75)
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1.3.3 Exchanges of Particles with a Reservoir:
The Grand-Canonical Ensemble

Similarly to what was done to obtain the canonical ensemble from the microcanonical
one by allowing energy exchanges with a reservoir, one can further allow exchanges
of particles with a reservoir. The corresponding situation is called the grand-canonical
ensemble.

We thus consider a macroscopic system S exchanging both energy and particles
with a reservoir R. The total system S ∪R is isolated with total energy Etot and total
number of particles Ntot fixed:

E + ER = Etot, N + NR = Ntot. (1.76)

Generalizing the calculations made in the canonical case, one has (with K a normal-
ization constant),

PGC(C) = K�R(ER, NR) (1.77)

= K�R(Etot − E(C), Ntot − N (C))

= K exp [SR(Etot − E(C), Ntot − N (C))] .

As E(C) � Etot and N (C) � Ntot, one can expand the entropy SR(Etot −
E(C), Ntot − N (C)) to first order:

SR(Etot − E(C), Ntot − N (C)) = SR(Etot, Ntot) (1.78)

−E(C)
∂SR
∂ER

∣∣∣
Etot,Ntot

− N (C)
∂SR
∂NR

∣∣∣
Etot,Ntot

.

As before, the derivative ∂SR/∂ER is identified with 1/T . We also introduce a new
parameter, the chemical potential μ, defined as:

μ = −T
∂SR
∂NR

(1.79)

(the T factor is conventional). Similarly to the temperature which takes equal val-
ues when subsystems exchanging energy have reached equilibrium, the chemical
potential takes equal values in subsystems exchanging particles, when equilibrium
is attained. Gathering all the above results and notations, one finds that

PGC(C) = 1

ZGC
exp

(
− 1

T
E(C) + μ

T
N (C)

)
(1.80)

which is the standard form of the so-called grand-canonical distribution. The nor-
malization constant ZGC, defined by
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ZGC =
∑
C

exp

(
− 1

T
E(C) + μ

T
N (C)

)
, (1.81)

is called the grand-canonical partition function.

1.4 Phase Transitions and Ising Model

Phase transitions correspond to a sudden change of behavior of the system when
varying an external parameter across a transition point. This could be of interest in
complex systems well beyond physics, and is generically associated with collective
effects. To illustrate this last property, let us briefly come back to the paramagnetic
model defined in Sect. 1.2.3, for which the mean magnetization per spin is given by

〈m〉 ≡ 〈M〉
N

= tanh

(
h

T

)
. (1.82)

The magnetization is non-zero only if there is a non-zero external field which tends
to align the spins. A natural question is thus to know whether one could obtain a non-
zero magnetization by including interactions tending to align spins between them
(and not with respect to an external source). In this spirit, let us consider the standard
(interaction) energy of the Ising model, in the absence of external field:

EIsing = −J
∑
〈i, j〉

si s j , J > 0. (1.83)

This interaction energy is minimized when all spins are parallel. To compute the mean
magnetization per spin, one would need to compute either the partition function in
presence of a external magnetic field and take the derivative of the free energy with
respect to the field, or to compute directly the mean magnetization from its definition.
In any case, this is a very complicated task as soon as the space dimension D is larger
than one, and the exact calculation has been achieved only in dimensions one and
two. The results can be summarized as follows:

• D = 1: m = 0 for all T > 0, so that there is no phase transition at finite
temperature. Calculations are relatively easy.

• D = 2: there is a phase transition at a finite critical temperature Tc, namely m = 0
for T ≥ Tc and m �= 0 for T < Tc. Calculations are however very technical.

• D ≥ 3: no analytical solution is known, but numerical simulations show that there
is a phase transition at a finite temperature that depends on D.
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1.4.1 Ising Model in Fully Connected Geometry

An interesting benchmark model, which can be shown analytically to exhibit a phase
transition, is the fully connected Ising model, whose energy is defined as

Efc = − J

N

∑
i< j

si s j + E0, (1.84)

where the sum is over all pairs of spins in the system. The 1/N prefactor is included
in order to keep the energy per spin finite in the large N limit. The term E0 is
added for later convenience, and is arbitrary at this stage (it does not modify the
canonical distribution). Considering the magnetization M = ∑N

i=1 si , one has, given
that s2

i = 1,

M2 = 2
∑
i< j

si s j + N (1.85)

from which one finds

Efc = − J

2N
(M2 − N ) + E0 = − J

2N
M2 + J

2
+ E0. (1.86)

Choosing E0 = −J/2, and introducing the magnetization per spin m = M/N , one
finds

Efc = − J

2
Nm2. (1.87)

One possible way to detect the phase transition is to compute the probability distrib-
ution P(m) of the magnetization, by summing over all configurations having a given
magnetization m:

P(m) = 1

Z

∑
C :m(C)=m

e−βE(C) (1.88)

= 1

Z
eS(m)+ 1

2 β J Nm2

where �(m) = eS(m) is the number of configurations with magnetization m. Using
the relation

�(m) = N !
N+!N−! (1.89)

with

N+ = N

2
(1 + m), N− = N

2
(1 − m), (1.90)

one obtains for S(m) = ln �(m)
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S(m) = −N

[
1 + m

2
ln(1 + m) + 1 − m

2
ln(1 − m) − ln 2

]
. (1.91)

Hence from Eqs. (1.88) and (1.91) it turns out that P(m) can be written as

P(m) = e−N f (m) (1.92)

with f (m) given by

f (m) = 1 + m

2
ln(1 + m) + 1 − m

2
ln(1 − m) − J

2T
m2 + f0(T ), (1.93)

where f0(T ) is a temperature-dependent constant, ensuring that the minimum value
reached by f (m) is 0, to be consistent with the normalization of P(m). The function
f (m) is called a large deviation function, or a Landau free energy function. Hence the
magnetization m0 that maximizes the probability distribution P(m) corresponds to a
minimum of f (m). Moreover, fluctuations around m0 are exponentially suppressed
with N . For high temperature T , the term J/T is small, and the entropic contribution
to f (m) should dominate, leading to m0 = 0. To understand what happens when
temperature is progressively lowered, it is useful to expand f (m) for small values of
m, up to order m4, leading to:

f (m) = f0(T ) + 1

2

(
1 − J

T

)
m2 + 1

12
m4 + O(m6). (1.94)

One can then distinguish two different cases:

• If T ≥ Tc ≡ J , f (m) has only one minimum, for m = 0.
• If T < Tc, f (m) has two symmetric minima ±m0. These minima are obtained as

solutions of the equation d f/dm = 0:

d f

dm
=

(
1 − J

T

)
m + 1

3
m3 = −

∣∣∣∣1 − J

T

∣∣∣∣m + 1

3
m3 = 0. (1.95)

The non-zero solutions are m = ±m0 with

m0 =
√

3

(
J

T
− 1

)
= √

3

(
Tc − T

T

)1/2

. (1.96)

It can be checked easily that the solution m = 0 corresponds in this case to a local
maximum of f (m), and thus to a local minimum of P(m) (Fig. 1.1).

Hence, there is a phase transition at T = Tc ≡ J , Tc being called the critical
temperature. The most probable magnetization m0 is called the “order parameter
of the phase transition”, as the phase transition is characterized by the onset of a
non-zero value of m0. In addition, the order parameter varies as m0 ∼ (Tc − T )β
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Fig. 1.1 Left, main plot large deviation function f (m), for temperature T = 1.2, 0.98, 0.9, and 0.8
from top to bottom (Tc = 1). Two symmetric minima appear for T < Tc, indicating the onset of
magnetized states. Inset zoom on the temperature range close to Tc; f (m) is plotted for T = 0.999,
0.995, 0.99 and 0.98 from top to bottom. Right magnetization m(T ) as a function of temperature
(Tc = 1)

for T close to Tc (T < Tc), with β = 1/2 here. The exponent β is an example of
critical exponent, and the value β = 1/2 is called the “mean-field value” of β, for
reasons that will become clear in the next section. The notation β is standard for the
critical exponent associated to the order parameter, and should not be confused with
the inverse temperature β = 1/T .

An important remark is that the average value 〈m〉 of the magnetization is still
zero for T < Tc, since the two values ±m0 of the magnetization have the same
probability. However, for a large system, the time needed to switch between states
m0 and −m0 becomes very large (at least if one uses a local spin-flip dynamics), and
the time-averaged magnetization over a typical observation time window is non-zero,
and equal either to m0 or to −m0.

1.4.2 Ising Model with Finite Connectivity

We now come back to the Ising model in a finite-dimensional space of dimension D.
As mentioned above, the analytical solution is hard to obtain in dimension D = 2,
and is not known in higher dimensions. However, useful approximations have been
developped, the most famous one being called the mean-field approximation.

The reason why the fully connected model can be easily solved analytically is
that its energy E is a function of the magnetization m only, as seen in Eq. (1.87).
When the model is defined on a finite-dimensional lattice, this property is no longer
true, and the energy reads:
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E = − J

2

N∑
i=1

si

⎛
⎝ ∑

j∈V(i)

s j

⎞
⎠ (1.97)

where V(i) is the set of neighboring sites of site i . The factor 1/2 comes from the
fact that a given link of the lattice now appears twice in the sum. This last expression
can be rewritten as

E = −DJ
N∑
i=1

si 〈s j 〉V(i), (1.98)

〈s j 〉V(i) being the local magnetization per spin of the set of neighbors V(i):

〈s j 〉V(i) ≡ 1

2D

∑
j∈V(i)

s j . (1.99)

The parameter D is the space dimension, and the number of neighbors of a given site
i is 2D, given that we consider hypercubic lattices (square lattice in D = 2, cubic
lattice in D = 3,...).

As a first approximation, one could replace the local magnetization per spin of
the set of neighbors by the global magnetization per spin of the whole system,
m = N−1 ∑N

i=1 si : 〈s j 〉V(i) → m. (1.100)

This approximation leads to the following expression of the energy

E ≈ Emf = −DJm
N∑
i=1

si = −DJNm2, (1.101)

where the subscript ‘mf’ stands for “mean-field” approximation. Then Emf depends
only on the magnetization m, and has a form similar to the energy Efc of the fully
connected model. One can define an effective coupling Jmf = 2DJ so that the forms
of the two energies become exactly the same, namely

Emf = −1

2
Jmf Nm2. (1.102)

Now it is clear that the results of the fully connected model can be applied to the
present mean-field approximation, yielding a phase transition at Tmf

c = Jmf = 2DJ .
For T > Tmf

c , 〈m〉 = 0 while for T < Tmf
c , but close to Tmf

c , 〈m〉 ∼ (Tmf
c − T )1/2.

Qualitatively, the approximation is expected to be valid for large space dimension D.
It can be shown, using more involved arguments, that for D ≥ 4, the approximation
is semi-quantitatively valid, in the sense that the value β = 1/2 of the critical
exponent, obtained from the approximation, is correct. However, the value of the
critical temperature Tmf

c is not correctly predicted by the mean-field approximation,
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namely Tc �= Tmf
c . For D < 4, the value of β differs from the mean-field value 1/2,

and the mean-field approximation breaks down. For D = 3, numerical simulations
indicate that β ≈ 0.31, and for D = 2, the exact solution yields β = 1/8. Finally,
for D = 1, 〈m〉 = 0 except for T = 0, so that the exponent β is not defined [6].

The discrepancy mentioned above between mean-field predictions and results
obtained in low-dimensional systems mainly comes from the presence of fluctuations
of the local magnetization

∑
j∈V(i) s j . Since on the other hand exact solutions are

very hard to obtain, there is need for a different approach, that could be generic
enough and could be centered on the issue of correlation, which is at the heart of
the difficulties encountered. This is precisely the aim of the renormalization group
approach.

1.4.3 Renormalization Group Approach

A standard observation on finite dimensional systems exhibiting a continuous phase
transition is that the correlation length diverges when the temperature approaches
the critical temperature Tc. The correlation length is defined through the correlation
function

Ci j = 〈(si − m0)(s j − m0)〉 = 〈si s j 〉 − m2
0. (1.103)

As soon as the distance r = di j between sites i and j is large with respect to the
lattice spacing a, the correlation function generally becomes isotropic, Ci j = C(r).
In addition, the large distance behavior of C(r) is often of the form

C(r) ∼ 1

rα
e−r/ξ, α > 0, (1.104)

which defines the correlation length ξ. The latter diverges for T → Tc. This is the
reason why direct calculations in the range T ≈ Tc are very difficult, due to the strong
correlation between spins. A natural idea is to look for an approach that could reduce
in some way the intensity of correlations, in order to make calculations tractable.

This is basically the principle of the renormalization group (RG) approach, in
which one progressively integrates out small scale degrees of freedom. The idea is
that at the critical point, structures are present at all scales, from the lattice spacing
to the system size. A RG transform may intuitively be thought of as defocusing the
picture of the system, so that fine details become blurred. This method is actually very
general, and could be relevant in many fields of complex system sciences, given that
issues like large scale correlations and scale invariance or fractals are often involved
in complex systems.

For definiteness, let us however consider again the Ising model. To implement
the RG ideas in a practical way, one could make blocks of spins and define an
effective spin for each block, with effective interactions with the neighboring blocks.
The effective interactions are defined in such a way that the large scale properties
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are the same as for the original (non-renormalized) model. This is done in practice
by conserving the partition function, namely Z ′ = Z (in the present section, the
prime denotes renormalized quantities). One would then like to define a renormalized
interaction constant J ′ such that

H ′ = −J ′ ∑
〈B1,B2〉

SB1 SB2 (1.105)

where B1 and B2 are generic labels for the blocks (the sites of the renormalized
lattice). The problem is that very often, the RG transform generates new effective
couplings, like next-nearest-neighbor couplings, that were absent in the original
model, and the number of couplings keeps increasing with the number of iterations
of the RG transform. However, in some simple cases, the transformation can be
performed exactly, without increasing the number of coupling constants, as we shall
see later on.

Yet, let us first emphasize the practical interest of the RG transform. We already
mentioned that one of the main difficulties comes from the presence of long-range
correlations close to the critical point. Through the RG transform, the lattice spacing
becomes a′ = 2a (if one makes blocks of linear size 2a). On the contrary, the corre-
lation length remains unchanged, since the large scale properties remain unaffected
by the RG transform. Hence the correlation length expressed in unit of the lattice
spacing, namely ξ/a, decreases by a factor of 2 in the transformation, to become

ξ′

a′ = 1

2

ξ

a
. (1.106)

Thus upon iterations of the RG transform, the effective Hamiltonian becomes such
that ξ′ ∼ a′, so that standard approximation schemes (mean-field,...) can be used.
One then needs to follow the evolution of the coupling constant J ′ under iterations.
This is called the renormalization flow.

An explicit example can be given with the one-dimensional Ising chain, using a
specific RG transform called decimation procedure [7]. We start with the energy (or
Hamiltonian)

H =
N∑
i=1

Hi,i+1(si , si+1) (1.107)

where the local interaction term Hi,i+1(si , si+1) is given by

Hi,i+1(si , si+1) = −Jsi si+1 + c. (1.108)

Note that periodic boundary conditions are understood. The constant c plays no role
at this stage, but it will be useful later on in the renormalization procedure. The basic
idea of the decimation procedure is to perform, in the partition function, a partial
sum over the spins of—say—odd indices in order to define renormalized coupling
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constants J ′ and h′. Then summing over the values of the spins with even indices
yields the partition function Z ′ of the renormalized model, which is by definition of
the renormalization procedure equal to the initial partition function Z . To be more
explicit, one can write Z as

Z =
∑
{s2 j }

∑
{s2 j+1}

exp [−βH({si })] (1.109)

where
∑

{s2 j } (resp.
∑

{s2 j+1}) indicates a sum over all possible values of the N/2
variables {s2 j } (resp. {s2 j+1}). Equation (1.109) can then be rewritten in the following
form:

Z =
∑
{s2 j }

exp
[−βH ′({s2 j })

]
(1.110)

where H ′({s2 j }) is the renormalized Hamiltonian, defined by

exp
[−βH ′({s2 j })

] =
∑

{s2 j+1}
exp [−βH({si })] . (1.111)

Assuming that the renormalized Hamiltonian can be decomposed into a sum of local
terms

H ′({s2 j }) =
N/2∑
j=1

H ′
j, j+1(s2 j , s2 j+2) (1.112)

we get from Eq. (1.111) the relation

N/2∏
j=1

exp
[−βH ′

j, j+1(s2 j , s2 j+2)
]

(1.113)

=
∑

{s2 j+1}

N/2∏
j=1

exp
[−βH2 j,2 j+1(s2 j , s2 j+1) − βH2 j+1,2 j+2(s2 j+1, s2 j+2)

]

=
N/2∏
j=1

∑
s2 j+1

exp
[−βH2 j,2 j+1(s2 j , s2 j+1) − βH2 j+1,2 j+2(s2 j+1, s2 j+2)

]

where in the last line, the sum runs over the single variable s2 j+1, the index j
being fixed within the product. This last relation is satisfied if, for any given
j = 1, . . . , N/2, and any given values of s2 j and s2 j+2,

exp
[−βH ′

j, j+1(s2 j , s2 j+2)
]

(1.114)

=
∑

s2 j+1=±1

exp
[−βH2 j,2 j+1(s2 j , s2 j+1) − βH2 j+1,2 j+2(s2 j+1, s2 j+2)

]
.
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Further assuming that H ′
j, j+1(s2 j , s2 j+2) takes the form

H ′
j, j+1(s2 j , s2 j+2) = −J ′s2 j s2 j+2 + c′, (1.115)

where J ′ and c′ are the renormalized parameters, one obtains

exp
[
β J ′s2 j s2 j+2 − βc′] =

∑
s2 j+1=±1

exp
[
β J (s2 j s2 j+1 + s2 j+1s2 j+2) − 2βc

]
.

(1.116)
Introducing the reduced variable3

u = e−4β J , (1.117)

Equation (1.116) leads to the following recursion relation:

u′ = 4u

(1 + u)2
. (1.118)

Let us denote as ξnd the dimensionless correlation length

ξnd = ξ

a
. (1.119)

Then from Eq. (1.106) the recursion relation for ξnd reads

ξ′
nd = 1

2
ξnd, (1.120)

from which one deduces that the fixed points of the renormalization procedure, that
satisfy ξ′

nd = ξnd, can only be ξnd = ∞ or ξnd = 0. The latter is called the trivial
fixed point, as it corresponds to the limit situation where no correlation is present in
the system. In constrast, the fixed point ξnd = ∞ corresponds to the critical fixed
point, where correlation extends over the whole system size. As ξnd decreases through
iteration of the RG transform, the critical fixed point ξnd = ∞ is unstable, while the
trivial fixed point ξnd = 0 is stable.

Coming back to the iteration relation Eq. (1.118), let us first look for the fixed
points of this equation, namely the solutions of

u = 4u

(1 + u)2
. (1.121)

The value u = 0 is obviously a solution, and it is easy to check that u = 1 is the
other positive solution (u = −3 is the third solution, but in view of Eq. (1.117), we

3We do not follow here the evolution of the constant c under renormalization, and rather focus on
the evolution of the physically relevant coupling constant J .
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are seeking for positive solutions only). Then to identify which one of the two fixed
points is the critical point, we need to investigate the stability of each fixed point
under iteration. The stability is studied by introducing a small variation δu around a
given fixed point u1, namely u = u1 ± δu, and writing the evolution equation for δu
to leading order. For u1 = 0, one finds, with u = δu,

δu′ = 4δu

(1 + δu)2
≈ 4δu, δu > 0, (1.122)

so that δu increases upon iteration: the fixed point u1 = 0 is unstable, and thus
corresponds to the critical fixed point. Besides, the fixed point u1 = 1 is easily
checked to be stable. Using u = 1 − δu, we have

1 − δu′ = 4(1 − δu)

(2 − δu)2
, (1.123)

leading after a second order expansion in δu to

δu′ ≈ 1

4
δu2. (1.124)

Hence δu converges to 0 upon iteration, confirming the stability of the fixed point
u1 = 1. Coming back to the critical fixed point, and recalling the definition
Eq. (1.117), one sees that u1 = 0 corresponds to an infinite value of J/T . In the above
framework, this case is interpreted as an infinite coupling limit, as the iteration was
made on J . However, the fixed point can also be interpreted as a zero-temperature
fixed point, keeping the coupling constant J fixed. A sketch of the corresponding
renormalization flow is presented in the top panel of Fig. 1.2.

J/T
0

Trivial
fixed point

∞

fixed point
Critical

J/T
0 ∞

fixed point
Trivial

fixed point
Trivial

fixed point
Critical

Fig. 1.2 Sketch of the renormalization flow, in terms of the reduced coupling constant J/T . In all
cases, the zero coupling (or infinite temperature) point is a trivial fixed point, but the position of
the critical fixed point may differ from one case to the other. Top one-dimensional Ising model; the
critical fixed point corresponds to infinite coupling (or zero temperature). Bottom fully connected
Ising model, or Ising model in dimension D ≥ 2; the critical fixed point corresponds to a finite
value of the reduced coupling, implying a finite critical temperature for a given coupling
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This one-dimensional example is of course only a very simple case, which can be
solved through other more direct methods. However, it is a good illustration of the
way the concept of RG can be implemented in practice. In two- or three-dimensional
models, exact treatments like the above one are most often not available. Yet, many
approaches based on different approximation schemes have been developped. A
typical situation in dimension D > 1 is that there is a finite value Kc of the ratio
K = J/T which corresponds to a critical fixed point, and both values K = 0 and
K = ∞ correspond to trivial fixed points, where no correlation is present (see bottom
panel of Fig. 1.2). Quite importantly, linearizing the iteration equation in the vicinity
of the critical fixed point allows the determination of the critical exponent β, as well as
other critical exponents. In the Ising chain studied above, this is not possible because
the critical temperature is zero, so that there is no extended temperature region where
the magnetization is non-zero. But this approach turns out to be relevant in dimension
higher than one.

As an illustration of the emergence of a critical fixed point with a finite coupling
Kc, let us briefly consider again the fully-connected Ising model (which, as seen
above, can be studied by more direct means than the renormalization group method).
The energy of the fully-connected Ising model reads Hfc = − 1

2 J Nm2 + c, where c
is an arbitrary constant. Below, we denote as K = β J the dimensionless coupling
constant (with β the inverse temperature). We perform a very simple renormalization
procedure that consists in integrating out a single spin, going from a system of N +1
spins to a system of N spins. Denoting as K̃ and c̃ the parameters of the renormalized
system, the renormalization transformation reads

exp

(
1

2
K̃ Nm2 + c̃

)
=

∑
SN+1=±1

exp

(
1

2

K

N + 1
(Nm + SN+1)

2 + c

)
(1.125)

with m = N−1 ∑N
i=1 Si . Expanding the square in the r.h.s. of Eq. (1.125) and taking

the logarithm of both sides, one obtains in the large N limit

1

2
(K̃ − K )Nm2 + c̃ = −1

2
Km2 + ln cosh(Km) + ln 2 + c . (1.126)

As for the one-dimensional Ising model, we do not follow the constant term c and
focus on the coupling constant K . Expanding the hyperbolic cosine to order m2, we
get from the coefficients of the m2 terms

(K̃ − K )N = −K + K 2 . (1.127)

Note that higher order terms in m, like m4, are also generated in this transforma-
tion; however, we do not study their role here. The renormalization flow is often
characterized by a parameter � which is additive when several renormalization trans-
formations are successively performed. In a single transformation, this parameter
varies by δ� = ln b, where b > 1 is the scale factor of the transformation. Here,
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b = (N + 1)/N , so that for large N , δ� = 1/N . Considering K as a function of �,
we can thus rewrite Eq. (1.127) as

dK

d�
= −K + K 2 . (1.128)

It is easy to check that Kc = 1 is a critical (unstable) fixed point, while K = 0 and
K = ∞ are trivial (stable) fixed points. Hence we recover the phase transition at
Kc = 1 obtained by direct calculations in Sect. 1.4.1.

1.5 Disordered Systems and Glass Transition

In the general framework of complex systems, disordered systems are systems where
each particle or agent has specific properties, which are qualitatively the same for all
of them, but differ quantitatively from one to the other. In theoretical models, these
quantitative properties are most often drawn from a given probability distribution
for each particle or agent, and remain constant in time. Disordered systems should
be very relevant in complex systems studies, like social science for instance, as each
human being has its specific skills or tastes.

In a physical context, the concept of disordered system could seem less natural,
since all particles within a given class are identical. In this case, disorder rather
comes from the possibly random position of the particles. A standard example is
that of magnetic impurities (that carry a magnetic moment, or spin) diluted in a
non-magnetic material. The interaction between magnetic atoms (which have to be
described in the framework of quantum mechanics) is mediated by the non-magnetic
atoms, and acquires an oscillatory behavior, depending on the distance ri j between
the two spins:

H = −
∑
i, j

J (ri j )si s j . (1.129)

The interaction constant J (ri j ) is a given function of the distance ri j , which oscil-
lates around 0, thus taking both positive and negative values. The amplitude of the
oscillations decays as a power-law of the distance. As the distances between atoms
are random, the interactions between atoms have a random sign, which is the basic
property of spin-glasses.

1.5.1 Theoretical Spin-Glass Models

In order to propose a simplified model for spin-glass materials, it has been proposed
to replace the positional disorder by an interaction disorder, the magnetic atoms
being now situated on a regular lattice. To this purpose, one considers an Ising-like
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model in D-dimensions, where the spins are placed at each node of a lattice. Spins
on neighboring sites (i, j) interact through a coupling constant Ji j , drawn from a
distribution P(J ). As the couplings Ji j are kept constant in time, one speaks about
quenched disorder. This model is called the Edwards-Anderson model [8]. In D = 1,
the Edwards-Anderson model is qualitatively equivalent to the standard Ising model,
up to a redefinition of the spins. In D > 1, analytical solutions are not known, and
results have thus been obtained through numerical simulations. A fully connected
version, called the Sherrington-Kirkpatrick model, has been proposed and solved [9],
but the techniques involved are already rather difficult, even at the level of the fully
connected model. The main qualitative picture [10] emerging from these models is
that below a given energy level, the phase space decomposes into a lot of valleys, or
metastable states, from which it takes a very long time to escape.

In order to give a flavor of the basic properties of spin-glass models, we present
below two of the simplest models of spin glasses, namely the Mattis model and the
Random Energy Model.

1.5.2 A Toy Model for Spin-Glasses: The Mattis Model

Spin-glass models are very complicated to study analytically, due to the presence of
disorder. There is a simplified case, however, in which explicit calculations can be
done relatively easily, while preserving some of the main features of spin-glasses.
This is the so-called Mattis model [11].

This model consists in a spin-glass on an arbitrary lattice, composed of N spins.
The energy of a configuration (s1, . . . , sN ) takes the usual form

H = −
∑
〈i, j〉

Ji j si s j − h
∑
i

si (1.130)

where as usual, the sum is carried over the nearest neighbors on the lattice. The
simplification with respect to generic spin glasses comes from the form assumed for
the disordered couplings Ji j

Ji j = Jεiε j (1.131)

where εi = ±1 are independent quenched random variables. Introducing new spin
variables σi = εi si , the energy reads

H = −J
∑
〈i, j〉

σiσ j − h
∑
i

εiσi . (1.132)

In the following, we shall focus on the case of zero external field, h = 0. Let us
introduce the mean magnetization per spin m, defined as
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m ≡ 1

N

∑
i

〈si 〉 (1.133)

where 〈si 〉 means a “thermal” average, that is an average over all spin configurations,
for given values of the disorder. Then it is easy to show, by averaging over the disorder
represented by the variables εi , that the disorder-averaged magnetization is equal to
zero, m = 0 (the overbar denotes an average over the disorder).

This can be done as follows. Introducing the variables σi , let us rewrite the aver-
aged magnetization as

m = 1

N

∑
i

εi 〈σi 〉 . (1.134)

Performing the average over the disorder, we get

m = 1

N

∑
i

εi 〈σi 〉 (1.135)

For the case h = 0 considered here, the energy expressed in terms of the variables σ
takes the standard Ising form

H = −J
∑
〈i, j〉

σiσ j (1.136)

and is thus independent of the disorder. Hence the thermal average 〈σi 〉 is also
independent of the disorder, so the disorder-averaged magnetization can be rewritten
as

m = 1

N

∑
i

εi 〈σi 〉 . (1.137)

Since εi = 0, one readily obtains that the disorder-averaged magnetization is equal
to zero. Note that this is true whatever the value of 〈σi 〉; in the low temperature phase
T < Tc (where Tc is the critical temperature of the Ising model), 〈σi 〉 is nonzero, but
the resulting magnetization still vanishes once averaged over the disorder.

To go one step further, it is also possible to show using similar methods that the
(zero-field) disorder-averaged susceptibility satisfies

χ ≡ ∂m

∂h

∣∣∣
h=0

= 1 − q

kBT
(1.138)

where q ≡ 〈si 〉2 = 〈σi 〉2. We thus find that the susceptibility diverges at T = 0 only,
confirming that there is no phase transition at T > 0. The parameter q is generically
called the Edwards-Anderson order parameter, and it is nonzero as soon as individual
spins have nonzero average values, even if these values takes random signs from one
spin to the other, and sum up to a zero global magnetization.
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1.5.3 The Random Energy Model

Another very simple disordered model, which already captures a lot of the phenom-
enology of realistic disordered systems, is the Random Energy Model (REM) [12].
The model has 2N configurations, labeled by an index α = 1, . . . , 2N (it can be
thought of as a spin model, with N spins si = ±1, although space is not explicitly
described in this model). To each configuration α is attached a time-independent
energy Eα, chosen at random from the distribution

P(E) = 1√
NπJ 2

exp

(
− E2

N J 2

)
. (1.139)

All the energies Eα are statistically independent random variables. The variance of
E in the distribution (1.139) is taken to be proportional to N in order to ensure that
the average energy of the model is extensive, i.e., proportional to N—see below.
We denote as n(E)dE the number of configurations with energy in the interval
[E, E + dE], so that n(E) is the density of configurations with energy E . The
density n(E) is a random quantity, but its fluctuations are small if 〈n(E)〉 is large,
so that n(E) ≈ 〈n(E)〉 in this regime. By definition, P(E) = 〈n(E)〉/2N , so that
〈n(E)〉 = 2N P(E), leading to

〈n(E)〉 = exp

(
N ln 2 − E2

N J 2

)

= exp

[
N

(
ln 2 − ε2

J 2

)]
(1.140)

where the energy density ε = E/N has been introduced. One sees that if ln 2 −
ε2/J 2 > 0, corresponding to |ε| < ε0 = J

√
ln 2, 〈n(E)〉 is exponentially large

with N , so that there is a large number of configurations at energy density ε, and
the assumption n(E) ≈ 〈n(E)〉 is justified. In contrast, if ln 2 − ε2/J 2 < 0, which
corresponds to |ε| > ε0, 〈n(E)〉 is exponentially small with N . This means that in
most samples, there are no configurations at energy density |ε| > ε0. The non-zero,
but small value of 〈n(E)〉 comes from the contribution to the average value of very
rare and atypical samples, which include some configurations with exceptionally low
(or high) energy.

We can now evaluate the partition function of the REM, defined as

Z =
2N∑

α=1

e−Eα/T . (1.141)

As all the energies Eα are random variables, the partition function Z is also a random
variable, which fluctuates from one realization of the disorder to another. Yet, we
can evaluate the typical value of Z as follows:
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Fig. 1.3 Illustration of the
function g(ε) for T > Tg

(full line), T = Tg (dashed
line) and T < Tg

(dot-dashed), with J = 1.
The function g(ε) is plotted
over the interval [−ε0, 0];
the value ε = −ε0 is
indicated by the vertical
dotted line. For T > Tg , the
maximum ε∗ of g(ε) satisfies
−ε0 < ε∗ < 0, while for
T ≤ Tg , the maximum of
g(ε) over the interval
[−ε0, 0] is reached at the
lower bound ε = −ε0
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Z ≈ Z typ =
∫ ε0

−ε0

dε 〈ñ(ε)〉 e−Nε/T , (1.142)

with the notation ñ(ε) = Nn(Nε). In Eq. (1.142), we have replaced ñ(ε) by 〈ñ(ε)〉
for |ε| < ε0, and by 0 for |ε| > ε0, consistently with the above discussion. We can
then write, using Eqs. (1.140) and (1.142),

Z typ =
∫ ε0

−ε0

dε eNg(ε) (1.143)

with

g(ε) = ln 2 − ε2

J 2
− ε

T
. (1.144)

The function g(ε) is illustrated in Fig. 1.3. In the large N limit, we can evaluate Z typ

through a saddle point calculation, namely

Z typ ∼ eNgmax(ε0) (1.145)

where gmax(ε0) is the maximum value of g(ε) over the interval [−ε0, ε0] (in practice,
over the interval [−ε0, 0] since the maximum is always reached for a negative energy
value). Let us first consider the maximum ε∗ of g(ε) over the entire real line. Taking
the derivative of g(ε), one has

g′(ε) = − 2ε

J 2
− 1

T
. (1.146)

From g′(ε) = 0, we find

ε∗ = − J 2

2T
. (1.147)
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As g(ε) is a parabola with negative curvature, it is increasing for ε < ε∗ and decreas-
ing for ε > ε∗. If ε∗ > −ε0, then gmax(ε0) = g(ε∗), so that

Z typ ∼ eNg(ε∗). (1.148)

The condition ε∗ > −ε0 translates into T > Tg, where the so-called glass transition
temperature Tg is defined as

Tg = J

2
√

ln 2
. (1.149)

For ε∗ < −ε0, or equivalently T < Tg, g(ε) is a decreasing function of ε over the
entire interval [−ε0, ε0], so that gmax(ε0) = g(−ε0), and

Z typ ∼ eNg(−ε0). (1.150)

From these estimates of Z typ, the free energy F = −T ln Z typ and the entropy
S = −∂F/∂T can be computed. For T > Tg, one finds

F = −N

(
T ln 2 + J 2

4T

)
, (1.151)

leading for the entropy to

S = N

(
ln 2 − J 2

4T 2

)
. (1.152)

For T < Tg, we have

F = −T Ng(−ε0) = −N J
√

ln 2. (1.153)

The free energy does not depend on temperature in this range, so that the correspond-
ing entropy vanishes:

S = −∂F

∂T
= 0, T < Tg. (1.154)

It can also be checked that the entropy given in Eq. (1.152) for T > Tg vanishes
continuously for T → Tg . Hence the temperature Tg corresponds to a glass transition
temperature, where the entropy goes to zero when lowering temperature down to Tg,
and remains zero below Tg. Actually, to make the statement sharper, only the entropy
density S/N goes to zero for T < Tg, in the infinite N limit. Computing subleading
corrections to the entropy, one finds that the entropy S is independent of N , but non-
zero, for T < Tg . The entropy is then intensive in this temperature range, meaning
that only a finite number of configurations, among the 2N ones a priori available, are
effectively occupied: the system is trapped in the lowest energy configurations.
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Chapter 2
Non-stationary Dynamics and Stochastic
Formalism

In the first part of this book, we have considered the stationary properties of physical
systems composed of a large number of particles, using as a fundamental statistical
object the joint distribution of all the degrees of freedom of the system (for instance
positions and velocities, or spin variables). This steady state is expected to be reached
after a transient regime, during which the macroscopic properties of the system evolve
with time. Describing the statistical state of the system during this transient regime
is also certainly of interest.

However, there is no known simple postulate (similar to the postulate of equiprob-
ability of configurations having a given energy) to characterize the N-particle prob-
ability distribution in this time-dependent regime. Still, one can resort to the generic
mathematical formalism of stochastic processes in order to describe statistically the
time evolution of some specific variables of interest, like the position or velocity
of a probe particle immersed in a fluid. This formalism is presented in Sect. 2.1, in
the simplest case of Markov processes. The example of the random evolution of a
single degree of freedom in a noisy environment (diffusive motion), leading to the
Langevin and Fokker-Planck equations, is discussed respectively in Sects. 2.2 and
2.3. In addition, there exists situations in which this random evolution can be much
faster or much slower than a priori expected, leading to anomalous diffusion. A brief
account of scaling arguments allowing for a qualitative understanding of anomalous
diffusion is given in Sect. 2.4. Generic issues regarding the convergence to equilib-
rium statistics in the framework of Markovian stochastic processes are presented
in Sect. 2.5. Interestingly, the equilibrium distribution may not exist in some cases,
leading to an endless relaxation called aging regime. An example of such a situation
is also provided.

© Springer International Publishing Switzerland 2016
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DOI 10.1007/978-3-319-42340-1_2

37



38 2 Non-stationary Dynamics and Stochastic Formalism

2.1 Markovian Stochastic Processes and Master Equation

2.1.1 Definition of Markovian Stochastic Processes

Let us start with some basic considerations on stochastic processes. For more
advanced reading on this topic, we refer the reader for instance to Ref. [1]. Roughly
speaking, a stochastic process is a dynamical process whose evolution is random, and
depends on the presently occupied state and possibly on the history of the system.

Considering first a discrete time process (t = 0, 1, 2, . . .), with a finite number N
of configurations C, we denote as T(Ct+1|Ct,Ct−1, . . . ,C0) the probability for the
process to jump to a new configuration Ct+1 between times t and t + 1, given the
whole history (Ct,Ct−1, . . . ,C0). Note that Ct+1 can a priori be any of the N pos-
sible configurations, including the configuration Ct itself. The transition probability
T(Ct+1|Ct,Ct−1, . . . ,C0) can be considered as a conditional probability, so that the
following normalization condition holds

∑
Ct+1

T(Ct+1|Ct,Ct−1, . . . ,C0) = 1. (2.1)

Such a stochastic process is said to be Markovian if the transition probability
T(Ct+1|Ct,Ct−1, . . . ,C0) depends only on the configuration Ct occupied at time
t, and not on previously occupied configurations. In short, Markovian processes are
said to be “memoryless”. The transition probability is then defined without explicit
reference to time t. In the following, we denote as T(C′|C) the transition probability
from configuration C to configuration C′. This transition probability satisfies the
normalization condition ∑

C′
T(C′|C) = 1. (2.2)

The above definition of discrete time Markovian stochastic processes (also called
Markov chains) can be rather straightforwardly extended to several other cases of
practical importance. First, the number of discrete configurations can be infinite,
and this case is recovered by taking the limit N → ∞ in the above definition. If
configurations are no longer discrete, but are defined by a continuous variable y, a
probability density T̃(y′|y) needs to be introduced, in such a way that T̃(y′|y)dy′ is
the probability to choose a new configuration in the interval [y′, y′ + dy′], starting
from a given configuration y. The equivalent of the normalization condition Eq. (2.2)
now reads ∫ ∞

−∞
T̃(y′|y)dy′ = 1. (2.3)

Another generalization consists in replacing the discrete time steps by a continuous
time evolution. Interestingly, continuous time dynamics can be obtained from the
discrete time dynamics in the limit of a vanishing time step. Hence instead of using
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a time step �t = 1 as above, we now take an infinitesimal step �t = dt. In order to
obtain a meaningful limit when dt → 0, the transition probabilities T(C′|C) from
configuration C to configuration C′ have to scale with dt in the following way:

T(C′|C) = W (C′|C) dt + O(dt2) if C′ �= C,

T(C|C) = 1 −
∑

C′(�=C)

W (C′|C) dt + O(dt2), (2.4)

where W (C′|C) is independent of dt. In other words, the evolution of continuous
time Markovian stochastic processes is characterized by transition rates W (C′|C),
such that W (C′|C)dt is the probability for the process to go from configuration C to
a new configuration C′ in a time interval [t, t + dt].

Finally, in the case of a continuous time process represented by a continuous
variables y, a density of transition rate w(y′|y) should be defined, in such a way
that w(y′|y)dy′dt is the probability for the process to reach a value in the interval
[y′, y′ + dy′] at time t + dt, starting from a value y at time t.

Beyond formal definitions and calculations, it is also important to be able to sim-
ulate Markovian stochastic processes on a computer. A brief account of elementary
simulation methods is provided in Appendix B.

2.1.2 Master Equation and Detailed Balance

The master equation describes the time evolution of the probability to occupy a
given configuration. The simplest situation corresponds to discrete time and discrete
configurations. The evolution of the probability Pt(C) to occupy configuration C at
time t is given by

Pt+1(C) =
∑
C′

T(C|C′)Pt(C
′). (2.5)

The probability Pt+1(C) is thus simply a sum over all possible configurations C′
of the probability to go from C′ to C, weighted by the probability to occupy the
configuration C′ at time t. It is easy to check, by summing over all configurations C
and using the normalization equation (2.2), that Eq. (2.5) conserves the normalization
of the probability Pt(C); namely, if

∑
C Pt(C) = 1, then

∑
C Pt+1(C) = 1.

For continuous configurations y, a density pt(y) has to be introduced (i.e., pt(y) dy
is the probability that the configuration at time t belongs to the interval [y, y + dy]),
and the evolution equation reads:

pt+1(y) =
∫ ∞

−∞
T̃(y|y′) pt(y′)dy′. (2.6)
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The evolution of continuous time processes can be derived from this discrete time
equation, using again the limit of a vanishing time step dt. Considering a continuous
time process with discrete configurations, we denote as P(C, t) the probability to be
in configuration C at time t. Combining Eqs. (2.4) and (2.5), we get

P(C, t + dt) =
∑

C′(�=C)

W (C|C′)dt P(C′, t) +
⎛
⎝1 −

∑
C′(�=C)

W (C′|C)dt

⎞
⎠P(C, t).

(2.7)

Expanding the left-hand-side of this last equation to first order in dt, as

P(C, t + dt) = P(C, t) + dP

dt
(C, t) dt + O(dt2) (2.8)

we eventually find, in the limit dt → 0, that the probabilityP(C, t) evolves according
to the master equation:

dP

dt
(C, t) = −P(C, t)

∑
C′(�=C)

W (C′|C) +
∑

C′(�=C)

W (C|C′)P(C′, t). (2.9)

The first term in the right-hand-side can be interpreted as a “loss” term (i.e., the sum
of all the possibilities to exit configuration C), while the second term can be thought
of as a “gain” term (the sum of all the possibilities to arrive at configuration C,
starting from any other configuration). A similar equation is obtained in the case of
continuous configurations y for the probability density p(y, t), by basically replacing
discrete sums by integrals in Eq. (2.9):

∂p

∂t
(y, t) = −p(y, t)

∫ ∞

−∞
dy′ w(y′|y) +

∫ ∞

−∞
dy′ w(y|y′) p(y′, t). (2.10)

Further generalization to multidimensional configurations y = (y1, . . . , yn) is also
straightforward. From now on, we will work mainly with discrete configurations
as far as formal and generic calculations are concerned, keeping in mind that the
continuous variable case can be obtained by switching from discrete to continuous
notations.

An interesting property of continuous time master equations is the notion of
detailed balance, which is related to the steady-state (i.e., time-independent) solution
of the master equation. From Eq. (2.9), a time-independent solution P(C) satisfies,
for all configurations C

∑
C′(�=C)

[−W (C′|C)P(C) + W (C|C′)P(C′)] = 0. (2.11)
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It may happen, for some specific stochastic processes, that the term between bracket
vanishes for all C′, namely

∀(C,C′), W (C′|C)P(C) = W (C|C′)P(C′). (2.12)

This situation is referred to as detailed balance. Processes satisfying detailed balance
are much easier to handle analytically. Besides this practical advantage, detailed bal-
ance also plays an important role in the stochastic modeling of microscopic physical
processes (i.e., at the molecular scale). This is due to the fact that detailed balance
can be interpreted as the stochastic counterpart of the microreversibility property
satisfied by the Hamiltonian dynamics—see Sect. 1.1. Indeed, the probability to
observe, once a statistical steady-state is reached, an elementary trajectory from C
at time t to C′ at time t+dt is W (C′|C) dt P(C), while the probability to observe the
reverse trajectory is W (C|C′) dt P(C′). The equality of these two probabilities, to
be thought of as a statistical microreversibility, precisely yields the detailed balance
relation (2.12). Hence in order to model, at a coarse-grained level, the dynamics of
a microscopic physical system through a Markovian stochastic process, it is natural
to assume that the process satisfies detailed balance (in addition to the appropriate
conservation laws, like energy conservation).

2.1.3 A Simple Example: The One-Dimensional
Random Walk

A simple and illustrative example of stochastic process is the one-dimensional ran-
dom walk, where a “particle” moves at random on a one-dimensional lattice. Let
us consider first the discrete time case: a particle can take only discrete positions
x = . . . ,−2,−1, 0, 1, 2, . . . on a line. Between times t and t + 1, the particle ran-
domly jumps to one of the two neighboring sites, so that xt+1 = xt +εt , with εt = ±1
with equal probabilities. The random variables εt and εt′ , with t �= t′, are independent
and identically distributed. An illustration of a random walk is given in Fig. 2.1.

Fig. 2.1 Illustration of a
random walk

0 2000 4000 6000 8000 10000
t

-50

0

50

100

x t

http://dx.doi.org/10.1007/978-3-319-42340-1_1


42 2 Non-stationary Dynamics and Stochastic Formalism

The average value and the variance of this process can be derived straightfor-
wardly. We first note that 〈xt+1〉 = 〈xt〉, so that 〈xt〉 = 〈x0〉 for all t (the notation
〈. . .〉 denotes an ensemble average, that is an average over a very large number of
samples of the same process; it may thus depend on time). For instance, if the walk
starts with probability 1 from x0 = 0, then all subsequent averages 〈xt〉 = 0.

Let us now compute the variance of the process, defined as

Var(xt) = 〈x2
t 〉 − 〈xt〉2. (2.13)

We assume for simplicity that 〈xt〉 = 0, so that Var(xt) = 〈x2
t 〉 (the generalization to

〈xt〉 �= 0 is however straightforward). From xt+1 = xt + εt , we get

x2
t+1 = x2

t + 2xtεt + 1, (2.14)

taking into account that ε2
t = 1. Computing the ensemble average of Eq. (2.14) yields

〈x2
t+1〉 = 〈x2

t 〉 + 2〈xt〉〈εt〉 + 1, (2.15)

using the fact that xt depends only on εt′ with t′ < t, so that xt and εt are independent
random variables. As 〈εt〉 = 0, it follows that 〈x2

t+1〉 = 〈x2
t 〉+1, so that 〈x2

t 〉 = 〈x2
0〉+t.

If x0 = 0 with probability 1, one has 〈x2
0〉 = 0, and 〈x2

t 〉 = t. This means that the
typical position reached by the walk after t steps is of the order of

√
t.

The present random walk problem bears a direct relationship to the Central Limit
Theorem [2, 3]—see Chap. 6. As the position xt of the random walk can be expressed
as xt = ∑t−1

t′=0 εt′ , where (ε0, . . . , εt−1) are independent and identically distributed
random variables, the distribution of the position of the random walk can be approx-
imated for a large time t, using the Central Limit Theorem, as

P(x, t) ≈ 1√
2πt

e−x2/2t . (2.16)

Alternatively, one may endow the random walk problem with a continuous time
dynamics. Labeling with an integer n the sites of the lattice, the transition rateW (n′|n)
from site n to site n′ is given by

W (n′|n) =
⎧⎨
⎩

ν
2 if n′ = n ± 1

0 otherwise
(2.17)

where ν is a characteristic frequency (the inverse of a time scale) of the process. The
master equation reads

dPn

dt
= −

∑
n′(�=n)

W (n′|n)Pn(t) +
∑
n′(�=n)

W (n|n′)Pn′(t). (2.18)

http://dx.doi.org/10.1007/978-3-319-42340-1_6
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Replacing the transition rates by their expression given in Eq. (2.17), one finds

dPn

dt
= −νPn(t) + ν

2
Pn+1(t) + ν

2
Pn−1(t). (2.19)

The evolution of the probability distribution Pn(t) can be evaluated from Eq. (2.19),
for instance by integrating it numerically. However, one may be interested in making
analytical predictions in the large time limit, and such a discrete-space equation is
not easy to handle in this case. To this aim, it is thus useful to use a procedure
called “continuous limit”, through which the discrete-space equation (2.19) can be
approximated by a partial differential equation. To be more specific, let us call a
the lattice spacing (which was set above to a = 1). At large time t � 1/ν, the
distribution Pn(t) is expected to vary over spatial scales much larger than the lattice
spacing a; in other words, one has

|Pn+1(t) − Pn(t)| � Pn(t). (2.20)

Plotting Pn(t) as a function of space, it thus appears essentially continuous. Hence
we postulate the existence of a distribution p(x, t) of the continuous variable x, such
that the discrete-space distribution can be approximated as Pn(t) ≈ a p(na, t). The
prefactor a is included to ensure a correct normalization,

∑
n Pn(t) = 1. Indeed, one

has for a → 0 ∑
n

Pn(t) = a
∑
n

p(na, t) →
∫ ∞

−∞
p(x, t) dx. (2.21)

For consistency, it is thus necessary to assume that p(x, t) is normalized such that∫ ∞
−∞ p(x, t) dx = 1.

Replacing Pn(t) by a p(na, t) in the master equation (2.19), one obtains

∂p

∂t
(x, t) = −νp(x, t) + ν

2
p(x + a, t) + ν

2
p(x − a, t). (2.22)

As a is small, one can expand p(x ± a, t) to second order in a, leading to

p(x ± a, t) = p(x, t) ± a
∂p

∂x
(x, t) + a2

2

∂2p

∂x2
(x, t) + O(a3). (2.23)

The linear terms ina appearing in Eq. (2.22) cancel out, so that this equation reduces to

∂p

∂t
(x, t) = νa2

2

∂2p

∂x2
(x, t) (2.24)

which is called the diffusion equation. This equation appears in numerous problems
in physics, like the diffusion of heat in a material, or the diffusion of dye in water
for instance. The coefficient 1

2νa2 has to take a finite value D > 0 for the equation
to be well-defined. As the lattice spacing a goes to zero, it is thus necessary that ν
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simultaneously goes to infinity, which means that the ’microscopic’ process appears
very fast on the scale of observation.

Equation (2.24) has several simple solutions of interest. For instance, if the dif-
fusing particle is bound to stay on a segment [−L,L], the long-time limit distribution
is a flat and time-independent distribution over the segment, p(x) = (2L)−1. In other
words, diffusion tends to flatten, or smoothen, the distribution. In contrast, if the parti-
cle can diffuse on the entire line without bound, the distribution p(x, t) never reaches
a steady-state regime, but rather enters a scaling regime in which the distribution
keeps broadening with time, with a well-defined Gaussian shape:

p(x, t) = 1√
4πDt

e−x2/4Dt . (2.25)

Note the analogy with the result obtained from the Central Limit Theorem in the
discrete time case—see Eq. (2.16).

2.2 Langevin Equation

2.2.1 Phenomenological Approach

The above random walk example was quite simple to investigate, but had little explicit
connection with physical systems. We now present another standard example based
on a physical phenomenology. Let us imagine a probe particle immersed in a fluid,
such that the size of the particle is small at the macroscopic scale, but still much
larger than the typical size of the molecules of the fluid. For the sake of simplicity,
we restrict the presentation to a one-dimensional system, but the more realistic three-
dimensional situation would follow the same line.

We choose the mass of the probe particle as the unit mass. The acceleration of the
particle is then governed by the force Fcoll exerted by the collisions with the other
particles:

dv

dt
= Fcoll, (2.26)

where v is the velocity of the probe particle. Since the collisional force Fcoll is
strongly fluctuating, the basic idea is to decompose it into a (velocity-dependent)
average force, and a purely fluctuating (or noise) part:

Fcoll = 〈Fcoll〉|v + ξ(t). (2.27)

Here, the average force 〈Fcoll〉|v is computed as an average over a large number of
samples of the process, conditioned to a given value v of the velocity. By definition,
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the noise ξ(t) has zero mean, 〈ξ(t)〉 = 0. In principle, the statistics of the noise could
also depend on the velocity v. We assume here that it is independent of v, but we
will come back to this point below. To proceed further, it is necessary to choose a
specific model for both 〈Fcoll〉 and ξ(t). The average force 〈Fcoll〉 can be interpreted
as an effective friction force, which slows down the probe particle; it is thus natural
to choose, as a first approximation, a linear friction force 〈Fcoll〉 = −γv, with γ > 0
a friction coefficient.

Then, a model of the noise should be given. Beside the property 〈ξ(t)〉 = 0, its two-
time correlation should be specified. Intuitively, one expects collisions occuring at
different times to be essentially uncorrelated, so that one should have 〈ξ(t) ξ(t′)〉 = 0
for |t− t′| � τcol, where τcol is the typical duration of a collision. Taking into account
time-translation invariance, the correlation function of ξ(t) may thus be written as

〈ξ(t) ξ(t′)〉 = C(t − t′), (2.28)

where C(u) is an even function, that decays on a characteristic time scale τcol, and
converges rapidly to zero when |u| → ∞. In practice, the dynamics of the velocity
v of the probe particle occurs on a time scale γ−1 that is much larger than τcol. In
this limit, the only quantity that plays a role in the dynamics of v is the integral of
the correlation function, that we denote as �,

� =
∫ ∞

−∞
C(t) dt . (2.29)

Since the detailed shape of C(t) plays no role in this limit, it is convenient to replace
C(t) by a delta function � δ(t − t′), keeping the same value of the integral (a basic
introduction to Dirac delta function can be found in Appendix A).

Altogether, Eq. (2.26) can be rewritten as:

dv

dt
= −γv + ξ(t), (2.30)

with
〈ξ(t)〉 = 0, 〈ξ(t) ξ(t′)〉 = � δ(t − t′) . (2.31)

Such an equation is called a linear Langevin equation, with additive white noise.
The equation is called linear because the deterministic part of the dynamics, the term
−γv, is linear with respect to the variable v. Additive noise simply means that the
noise is introduced in the equation as an additive term which is independent of the
variable v. We will see in Sect. 2.2.3 more complicated situations where the noise
term is coupled to the dynamical variable.
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2.2.2 Basic Properties of the Linear Langevin Equation

We now study some elementary properties of the linear Langevin equation (2.30),
namely the ensemble averages 〈v(t)〉 and 〈v(t)2〉. For simplicity, we take as initial
condition a fixed value v(0) = v0. We first note, computing the ensemble average of
Eq. (2.30):

d

dt
〈v(t)〉 = −γ〈v(t)〉, (2.32)

that the ensemble-averaged velocity 〈v(t)〉 obeys the same equation as the non-
averaged velocity, except that noise is now absent. This property is specific to the
linear Langevin equation, and would not be present if we had included a non-linear
dependence on v in the friction force—e.g., 〈Fcoll〉 = −γv − γ3v

3. The solution of
Eq. (2.32) is a decaying exponential:

〈v(t)〉 = v0 e
−γt . (2.33)

More interestingly, the effect of the noise has a deep impact on the evolution
of the variance of the velocity, Var[v(t)] = 〈v(t)2〉 − 〈v(t)〉2. In order to compute
〈v(t)2〉, we first determine the explicit time-dependence of v(t), considering ξ(t) as
an arbitrary given function. Following standard mathematical methods, the general
solution of Eq. (2.30) is given by the sum of the general solution of the homogeneous
equation (i.e., the noiseless equation) and of a particular solution of the full equation.
The general solution of the homogeneous equation is vh(t) = A0 e−γt , where A0 is
an arbitrary constant. In order to determine a particular solution, one can use the
so-called “variation of the constant” method, which indicates that such a solution
should be looked for in the form vp(t) = A(t) e−γt , that is, simply replacing the
constant A0 in the solution vh(t) of the homogeneous equation by a function A(t) to
be determined. Inserting vp(t) in Eq. (2.30), we get

dA

dt
e−γt = ξ(t) (2.34)

whence the solution

A(t) =
∫ t

0
eγt′ξ(t′) dt′ (2.35)

follows—since we look for a particular solution at this stage, there is no need to add
a constant term to Eq. (2.35). Altogether, one finds for v(t), taking into account the
initial condition v(0) = v0,

v(t) = v0 e
−γt + e−γt

∫ t

0
eγt′ξ(t′) dt′. (2.36)
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Computing v(t)2 yields

v(t)2 = v2
0 e

−2γt + e−2γt

(∫ t

0
eγt′ξ(t′) dt′

)2

+ 2v0 e
−2γt

∫ t

0
eγt′ξ(t′) dt′. (2.37)

Now taking an ensemble average, the last term vanishes because 〈ξ(t)〉 = 0, and we
get

〈v(t)2〉 = v2
0 e

−2γt +
〈
e−2γt

(∫ t

0
eγt′ξ(t′) dt′

)2
〉

. (2.38)

The first term on the right hand side of Eq. (2.38) is precisely 〈v(t)〉2, so that

Var[v(t)] =
〈
e−2γt

(∫ t

0
eγt′ξ(t′) dt′

)2
〉

. (2.39)

The square of the integral can be expanded as a product of two integrals, which in
turn can be converted into a double integral:

(∫ t

0
eγt′ξ(t′) dt′

)2

=
∫ t

0
eγt′ξ(t′) dt′

∫ t

0
eγt′′ξ(t′′) dt′′ (2.40)

=
∫ t

0
dt′

∫ t

0
dt′′eγ(t′+t′′)ξ(t′)ξ(t′′)

so that Eq. (2.39) eventually turns into

Var[v(t)] = e−2γt
∫ t

0
dt′

∫ t

0
dt′′eγ(t′+t′′)〈ξ(t′)ξ(t′′)〉 (2.41)

(we recall that the ensemble average can be interverted with linear operations like
integrals or derivatives). Using the expression (2.31) of 〈ξ(t′)ξ(t′′)〉, we get

Var[v(t)] = � e−2γt
∫ t

0
dt′

∫ t

0
dt′′eγ(t′+t′′)δ(t′ − t′′). (2.42)

It is useful to make a change of variable here, replacing t′′ by the variable y = t′′ − t′
in the second integral, which yields

Var[v(t)] = � e−2γt
∫ t

0
dt′e2γt′

∫ t−t′

−t′
dy eγy δ(y). (2.43)
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The second integral in Eq. (2.43) can easily be computed, thanks to the properties of
the delta function, leading to

∫ t−t′

−t′
dy eγy δ(y) = 1. (2.44)

We thus eventually find, after integration of Eq. (2.43),

Var[v(t)] = �

2γ

(
1 − e−2γt

)
. (2.45)

Hence the variance starts from a zero value at t = 0 (the value v0 at t = 0 is non-
random), and progressively grows until reaching the asymptotic limit �/(2γ). As
〈v(t)〉 → 0 when t → ∞, the variance reduces to 〈v2〉 at large time, and this value
can be identified with the equilibrium average. It is known from equilibrium statistical
physics (see Sect. 1.2.4) that 〈 1

2v2〉eq = 1
2kBT (equipartition relation), where T is the

temperature of the surrounding liquid, and kB the Boltzmann constant—we recall that
the mass of the probe particle was set to unity.1 Hence equilibrium statistical physics
imposes a relation between the two phenomenologically introduced coefficients �

and γ, namely � = 2γkBT .
In addition, using a slight generalization of the above calculation, it is also straight-

forward to show that for large times (t, t′ � γ−1), the correlation of v decays expo-
nentially,

〈v(t)v(t′)〉 = �

2γ
e−γ|t−t′ | , (2.46)

which reduces to the infinite time limit of Eq. (2.45) for t = t′.
Before considering more general forms of Langevin equations, it is useful to say

a word on the practical way to integrate numerically the Langevin equation (2.30).
Similarly to ordinary differential equations, one needs to discretize the equation
using small time steps �t. This discretization is obtained by computing the integral
of Eq. (2.30) over a time interval [t, t + �t], yielding

v(t + �t) = v(t) − γv(t)�t +
∫ t+�t

t
ξ(t′)dt′ (2.47)

with the approximation
∫ t+�t
t v(t′)dt′ ≈ v(t)�t, valid for small �t. From Eq. (2.31),

the quantity �W ≡ ∫ t+�t
t ξ(t′)dt′ is a random variable with zero mean and variance

〈(�W )2〉 =
∫ t+�t

t
dt′

∫ t+�t

t
dt′′〈ξ(t′)ξ(t′′)〉 = ��t . (2.48)

1Reintroducing the mass m, the equipartition relation reads 〈 1
2mv2〉eq = 1

2 kBT .

http://dx.doi.org/10.1007/978-3-319-42340-1_1
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From its definition, �W can be interpreted as a sum of a very large number of statisti-
cally independent contributions, so that it is natural to assume that the distribution of
�W is Gaussian from the Central Limit Theorem—see Chap. 6. Hence we assume
that �W is a Gaussian random variable with zero mean and variance ��t (more
rigorous justifications can be found, e.g., in Ref. [4]). Discretized stochastic trajec-
tories can thus be numerically obtained from Eq. (2.47), drawing at each time step
a new random value of �W (values of �W at different time steps are statistically
independent). Time-dependent average values of observables are then obtained by
averaging a given observable (e.g., v(t) or v(t)2) over many independent stochastic
trajectories with the same initial condition.

2.2.3 More General Forms of the Langevin Equation

We have studied in the previous section the simplest version of the Langevin equation,
namely the linear Langevin equation with additive noise. We now wish to briefly
mention several important generalizations of this equation. From now on, we will
generically call x the variable evolving according to the Langevin equation. It may
be any type of ‘mesoscopic’ physical observable, which is sensitive to the presence
of fluctuations, but evolves on times scales that are sufficiently large for a Langevin
type of description to be relevant. In the example of the probe particle discussed in
Sect. 2.2.1, this means that the probe particle is much heavier than the molecules it
collides with, but still much lighter than, say, a grain of sand which would not feel
any fluctuations in the force exerted by the surrounding fluid (if the fluid is at rest).

A first generalization of the linear Langevin equation is to consider a non-linear
deterministic term in the equation:

dx

dt
= Q(x) + ξ(t) (2.49)

where Q(x) is an arbitrary function of x. The white noise ξ(t) still satisfies 〈ξ(t)〉 = 0
and 〈ξ(t)ξ(t′)〉 = �δ(t−t′). In the following subsections, we will generically consider
this case when dealing with the Langevin equation. More generally, one may consider
Langevin equations coupling an arbitrary number N of variables xi,

dxi
dt

= Qi(x1, . . . , xN ) + ξi(t), i = 1, . . . ,N, (2.50)

where the N stochastic variables ξi(t) are white noises with correlations

〈ξi(t)ξj(t′)〉 = �ij δ(t − t′) , i, j = 1, . . . ,N . (2.51)

Another important generalization of the Langevin equation is the one with mul-
tiplicative noise, in contrast to additive noise. For a single variable, the Langevin

http://dx.doi.org/10.1007/978-3-319-42340-1_6
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equation with multiplicative noise takes the generic form

dx

dt
= Q(x) + B(x) ξ(t) (2.52)

with a white noise ξ(t) of unit amplitude, 〈ξ(t)ξ(t′)〉 = δ(t − t′) (the amplitude
� previously considered can be reabsorbed into the function B). In this case, the
amplitude of the noise term B(x) ξ(t) depends on the value of the variable x. This is
important for instance in the modeling of absorbing phase transitions (see Chap. 4)
where fluctuations vanish in the absorbing state, when there are no more particles
in the system. The specificity of the multiplicative Langevin equation (2.52) is that
it requires the specification of a discretization scheme in order to be well-defined,
as different discretization schemes lead to different results. A rigorous description
of Eq. (2.52) can be achieved within the mathematical framework of stochastic cal-
culus [4]. Here, we however stick to a heuristic viewpoint and simply describe the
two main interpretations of Eq. (2.52) at an elementary level. From a mathematical
perspective, the most natural interpretation is the Ito one, corresponding to the fol-
lowing discretization of Eq. (2.52). Introducing an increasing sequence of discrete
times ti = i�t, the Ito interpretation corresponds to

x(ti+1) = x(ti) + Q
(
x(ti)

)
�t + B

(
x(ti)

)
�Wi (2.53)

where �Wi is a Gaussian random variable with zero mean and variance �t. An alter-
native interpretation, commonly used in the physics community, is the Stratonovich
one, which is expressed in terms of the discretized equation

x(ti+1) = x(ti) + Q
(
x(ti)

)
�t + B

(
x(ti) + x(ti+1)

2

)
�Wi . (2.54)

Both formulations lead to consistent interpretations of Eq. (2.52). The choice of one
or the other may in some cases be related to the problem at hand. For instance,
starting from a problem with a finite, but small correlation time of the noise, the
correct interpretation in the white noise limit is the Stratonovich one [4].

Finally, another type of generalization consists in changing the properties of the
noise, assuming that the noise has a finite correlation time. A typical case is that of
an exponentially decaying correlation function

〈ξ(t)ξ(t′)〉 = �

2τ
e−|t−t′ |/τ (2.55)

which reduces to a white noise in the limit τ → 0. For a non-zero τ , such a noise is
often called a ‘colored noise’, and it may be obtained for instance from an underlying
Langevin equation with white noise, as illustrated in Eq. (2.46). Then an equation
like

dv

dt
= −γv + ξ(t), (2.56)

http://dx.doi.org/10.1007/978-3-319-42340-1_4
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yields for the mean square velocity in the limit t → ∞, generalizing the calculation
made in Sect. 2.2.1,

〈v(t)2〉 = �

2γ(1 + γτ )
. (2.57)

As discussed above, white noise is often used to model equilibrium systems, and the
ratio �/γ is in this case related to temperature. In contrast, colored noise is relevant
when modeling out-of-equilibrium systems, and no generic relation between �, γ,
τ and macroscopic parameters of the problem (like temperature in the equilibrium
case) is known.

2.2.4 Relation to Random Walks

After having introduced the Langevin equation from a physical perspective (that of a
probe particle immersed in a fluid), it is interesting to present the Langevin equation
from another perspective, that of random walks. To this aim, we come back to the
random walk model introduced in Sect. 2.1.3 and generalize it by including a small
bias in the displacements. We consider a discrete time dynamics with a time step �t,
and we call a the lattice spacing. At time t + �t, the new position xt+�t is chosen
according to xt+�t = xt + εt , where εt is given by

εt =
⎧⎨
⎩

a with prob. ν
2

(
1 + aq(xt)

)
�t ,

−a with prob. ν
2

(
1 − aq(xt)

)
�t ,

0 with prob. 1 − ν�t .
(2.58)

Note that the above dynamical rules can be interpreted as a discretized version of a
continuous time dynamics, as seen from the presence of the time step �t and from
the allowed value εt = 0. Let us define �xt ≡ xt+�t − xt . The dynamical rules
xt+�t = xt + εt can be rewritten as

�xt
�t

= εt

�t
(2.59)

which is the analog of Eq. (2.26), provided that xt is interpreted as a velocity; εt/�t
then plays the role of a random force. Computing the average value of this ‘force’,
we find using Eq. (2.58) 〈 εt

�t

〉
= a2νq(xt). (2.60)

Note that the average is taken over εt , for a fixed value of xt . Let us now consider the
fluctuating part of the ‘force’, and define

ξt = 1

�t
(εt − 〈εt〉), (2.61)
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which is thus the discrete-time analog of ξ(t) introduced in Sect. 2.2.1. We wish to
evaluate the correlation of ξt , given by

〈ξtξt′ 〉 = 1

(�t)2

〈
(εt − 〈εt〉)(εt′ − 〈εt′ 〉)

〉
. (2.62)

For t �= t′, 〈ξtξt′ 〉 is thus equal to zero, as εt and εt′ are independent random variables.
If t = t′, one has 〈ξtξt′ 〉 = Var(εt)/(�t)2. Introducing (k, k′) through t = k�t and
t′ = k′�t, Eq. (2.62) reads

〈ξtξt′ 〉 = 1

(�t)2
Var(εt) δk,k′ (2.63)

where δk,k′ is the Kronecker delta symbol, equal to 1 if k = k′ and to zero otherwise.
Evaluating the variance of εt , we find

Var(εt) = a2ν�t + O(�t2), (2.64)

so that to leading order in �t,

〈ξtξt′ 〉 = a2ν
δk,k′

�t
. (2.65)

This expression is the analog of Eq. (2.31), and the role played by τcol in the physical
approach to the Langevin equation (see Sect. 2.2.1) is now played by �t. To provide
further evidence for this correspondence, we point out that δk,k′/�t can be interpreted
as the discretized version of the Dirac distribution. Indeed, from the definition of the
Kronecker delta symbol, one can write for an arbitrary function f

∞∑
k′=−∞

�t f (k′�t)
δk,k′

�t
= f (k�t), (2.66)

which is precisely the discretized version of the fundamental property (A.1) of the
Dirac delta function. Hence taking the limit �t → 0 and a → 0, one can reformulate
the above biased random walk problem as a Langevin equation, namely

dx

dt
= Q(x) + ξ(t) (2.67)

where Q(x) ≡ a2νq(x), and where the noise ξ(t) satisfies

〈ξ(t)〉 = 0, 〈ξ(t) ξ(t′)〉 = � δ(t − t′) with � = a2ν . (2.68)
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2.3 Fokker-Planck Equation

The Fokker-Planck equation describes the evolution of the probability distribution
p(x, t) of a variable x obeying a Langevin equation. It can be derived in several ways,
one of the simplest being to start from the above biased random walk problem, and
to derive the continuous limit of the master equation, following the same lines as for
the derivation of the diffusion equation—see Sect. 2.1.3.

2.3.1 Continuous Limit of a Discrete Master Equation

Starting from the biased random walk model of Sect. 2.2.4, we consider the continu-
ous time version of the model, and write the corresponding transition rates W (n′|n),
where n = x/a is an integer labeling the sites of the one-dimensional lattice:

W (n′|n) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ν
2 (1 + aqn) if n′ = n + 1

ν
2 (1 − aqn) if n′ = n − 1

0 otherwise.

(2.69)

To lighten notations, we have denoted q(na) as qn. Formally, one can write the
transition rates as

W (n′|n) = ν

2
(1 + aqn)δn′,n+1 + ν

2
(1 − aqn)δn′,n−1. (2.70)

The master equation then reads

dPn

dt
= −νPn(t) + ν

2
(1 + aqn−1)Pn−1(t) + ν

2
(1 − aqn+1)Pn+1(t). (2.71)

We now take the continuous limit of this master equation. Writing, as in Sect. 2.1.3,
Pn(t) = a p(na, t), where p(x, t) is a distribution of the continuous variable x satis-
fying

∫ ∞
−∞ p(x, t) dx = 1, we have

∂p

∂t
(x, t) = −ν p(x, t)+ ν

2
[1+a q(x−a)] p(x−a, t)+ ν

2
[1−a q(x+a)] p(x+a, t).

(2.72)
Expanding p(x ± a, t) and q(x ± a) to second order in a, we get

p(x ± a, t) = p(x, t) ± a
∂p

∂x
(x, t) + a2

2

∂2p

∂x2
(x, t) + O(a2), (2.73)

q(x ± a) = q(x) ± a q′(x) + a2

2
q′′(x) + O(a2). (2.74)
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Gathering results, one then finds, keeping only terms up to order a2 in Eq. (2.72):

∂p

∂t
(x, t) = −a2ν q(x)

∂p

∂x
− a2ν q′(x) p(x, t) + a2ν

2

∂2p

∂x2
. (2.75)

We note that a2ν is related both to the diffusion coefficientD introduced in Sect. 2.1.3,
and to the coefficient � characterizing the correlation of the noise in Sect. 2.2.4:

a2ν = 2D = �. (2.76)

In order to have a well-defined continuous limit, one must here again take the limits
a → 0 and ν → ∞ in such a way that a2ν converges to a finite value. Defining
Q(x) = � q(x), Eq. (2.75) can be rewritten as

∂p

∂t
(x, t) = − ∂

∂x

(
Q(x) p(x, t)

)
+ �

2

∂2p

∂x2
. (2.77)

This equation is called a Fokker-Planck equation. It describes, from another perspec-
tive, the same random process as the Langevin equation (2.67).

As an example of application of the Fokker-Planck equation, we come back to
the probe particle studied in Sect. 2.2.1. In this case, the variable x is replaced by
the velocity v, and the bias function is given by Q(v) = −γv. The Fokker-Planck
equation reads

∂p

∂t
(v, t) = γ

∂

∂v

(
v p(v, t)

)
+ �

2

∂2p

∂v2
, (2.78)

where the coefficients � and γ are related through � = 2γkBT . It can be checked that
the solution of this equation, with initial condition p(v, t = 0) = δ(v − v0)—i.e.,
the initial velocity is non-random and equal to v0—is given by

p(v, t) = [
2πkBT

(
1 − e−2γt

)]−1/2
exp

[
− (v − v0e−γt)2

2kBT(1 − e−2γt)

]
. (2.79)

One can check that the mean velocity 〈v〉 and the variance Var[v(t)] correspond to
the ones calculated from the Langevin equation—see Eqs. (2.33) and (2.45). This
process, namely a random walk confined by a quadratic potential, is also called
Ornstein-Uhlenbeck process.

2.3.2 Kramers-Moyal Expansion

More generally, the Fokker-Planck equation may be derived from an arbitrary master
equation provided the random variable performs only small jumps. Let us consider a
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stochastic Markov process defined by transition rates W (x′|x). The master equation
reads

∂p

∂t
(x, t) =

∫
dx′ [W (x|x′)p(x′, t) − W (x′|x)p(x, t)] (2.80)

where the integration range is the domain of definition of the variable x. Introducing
the notation T(y, x) ≡ W (x + y|x), the master equation (2.80) can be rewritten as

∂p

∂t
(x, t) =

∫
dy [T(y|x − y)p(x − y, t) − T(y, x)p(x, t)] . (2.81)

It is then possible to expand the dependence on x − y of T(y|x − y)p(x − y, t) in
powers of y around x − y = x, leading to the Taylor series expansion

T(y|x − y)p(x − y, t) =
∞∑
n=0

(−y)n

n!
∂n

∂xn
[T(y, x)p(x, t)] (2.82)

with the convention that the zeroth order derivative of a function is the function itself.
Reporting expansion (2.82) into Eq. (2.81) and exchanging the order of integrals and
derivatives, we get the so-called Kramers-Moyal expansion [1, 4] of the master
equation,

∂p

∂t
(x, t) =

∞∑
n=1

(−1)n

n!
∂n

∂xn
[αn(x)p(x, t)] (2.83)

where we have defined

αn(x) ≡
∫

dy ynW (x + y|x) . (2.84)

Truncating this expansion to second order in the derivatives, one obtains the Fokker-
Planck equation

∂p

∂t
(x, t) = − ∂

∂x
[α1(x)p(x, t)] + ∂2

∂x2
[α2(x)p(x, t)] . (2.85)

The coefficients α1(x) and α2(x) play the same role as the quantities Q(x) and �/2
appearing in Eq. (2.77). Note that the coefficient α2(x) is here a function of x, while
its counterpart � was assumed to be constant in Eq. (2.77).

2.3.3 More General Forms of the Fokker-Planck Equation

The Fokker-Planck equation can also be generalized to an arbitrary number of cou-
pled variables. Let us consider a set of N variables xi(t) obeying the Langevin
dynamics
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dxi
dt

= Qi(x1, . . . , xN ) + ξi(t), i = 1, . . . ,N, (2.86)

where the N random noises ξi(t) are correlated according to

〈ξi(t)ξj(t′)〉 = �ij δ(t − t′) . (2.87)

The associated Fokker-Planck equation ruling the probability distribution
P(x1, . . . , xN , t) reads

∂P

∂t
= −

N∑
i=1

∂

∂xi

(
QiP

)
+ 1

2

N∑
i,j=1

�ij
∂2P

∂xi∂xj
(2.88)

where we have dropped the arguments of the functions Qi and P to lighten notations.
Finally, the Fokker-Planck equation can also be generalized to the case of multi-

plicative noise in the associated Langevin equation. For simplicity, we present here
only the case of a single variable, but the interested reader may find more details,
e.g., in Ref. [4]. We start from the multiplicative Langevin equation (2.52), that we
rewrite here for clarity,

dx

dt
= Q(x) + B(x) ξ(t) . (2.89)

We recall that the white noise ξ(t) has a unit amplitude, and satisfies 〈ξ(t)ξ(t′)〉 =
δ(t − t′). As we have seen in Sect. 2.2.3, such a multiplicative Langevin equation
may be interpreted in different ways, and the interpretation scheme considered has
to be specified. In the Ito interpretation, the associated Fokker-Planck equation is
given by

∂p

∂t
(x, t) = − ∂

∂x

(
Q(x) p(x, t)

)
+ 1

2

∂

∂x

(
B(x)2 ∂p

∂x

)
, (2.90)

while in the Stratonovich interpretation, the Fokker-Planck equation reads

∂p

∂t
(x, t) = − ∂

∂x

(
Q(x) p(x, t)

)
+ 1

2

∂

∂x

(
B(x)

∂

∂x

(
B(x) p(x, t)

))
. (2.91)

As discussed in Sect. 2.2.3, the choice of the interpretation framework depends on
the problem considered. For systems with small, but non-zero correlation noise, the
Stratonovich interpretation is the relevant one, hence its widespread use in physics
for instance.
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2.4 Anomalous Diffusion: Scaling Arguments

In the previous sections, we have introduced basic notions on random walks and some
related types of stochastic processes. An important feature of standard random walks
is that transitions between sites are characterized by well-defined time and length
scales: the length scale is the lattice spacing a, and the time scale is the time step
�t for discrete time dynamics, or the inverse of the frequency ν for continuous time
dynamics—see Sect. 2.1.3. One can also consider random walks with a continuous
distribution of jump length �x, instead of a random walk on a lattice where �x is
constrained to be an integer multiple of the lattice spacing a. Yet, as long as the
second moment 〈(�x)2〉 of the jump length remains finite, the basic properties of the
random walk remain the same. In particular, for an unbiased random walk such that
〈�x〉 = 0, the mean-square displacement 〈x(t)2〉 is proportional to t independently of
the detailed shape of the distribution P(�x). In other words, the typical displacement
xtyp(t) is of the order of t1/2.

However, if the (symmetric) distribution P(�x) is broad enough so that 〈(�x)2〉
is infinite, the typical displacement xtyp(t) generically grows faster than t1/2, often as
a power tβ with β > 1/2. Such a random walk is called superdiffusive, as it moves
faster than a diffusive walk. This happens in particular when P(�x) has power-law
tails

P(�x) ∼ 1

|�x|1+α
, |�x| → ∞ (2.92)

with 0 < α < 2 (the symbol ∼ here means asymptotic proportionality). Similarly,
instead of considering broadly distributed jumps, one may consider a broad distrib-
ution of the time τ elapsed between two successive jumps, leading to an intermittent
dynamics. Such random walks are generically called continuous time random walks.
If the distribution ψ(τ ) is such that its first moment 〈τ 〉 is infinite (which typically
happens when ψ(τ ) ∼ 1/τ 1+α with 0 < α < 1), the dynamics is slowed down,
and the typical displacement grows more slowly than t1/2, often as a power tβ with
β < 1/2. Such a random walk is called subdiffusive.

A well-defined mathematical formalism exists to properly deal with such contin-
uous time random walks—see, e.g., [5, 6]. Some aspects of these anomalous random
walks can also be studied in the framework of the Generalized Central Limit The-
orem, which is introduced in Chap. 6. Here, we simply wish to provide the reader
with some simple scaling arguments that can be used to understand some of the basic
properties of anomalous random walks.

2.4.1 Importance of the Largest Events

Qualitatively, the reason why anomalous random walks have a typical displacement
that scales differently from t1/2, is that extreme events (very large jumps, or very
large time lags between two jumps) start to play an important role. This is actually a

http://dx.doi.org/10.1007/978-3-319-42340-1_6
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major property of broad distributions. In this subsection, we would like first to give
a flavour, in intuitive terms, of why these large events acquire a significant statistical
weight. To do so, we consider a positive random variable x with a distribution p(x)
having a power-law tail

p(x) ∼ 1

x1+α
, x → ∞. (2.93)

When α is lowered, the distribution (2.93) becomes broader and broader, with a
‘heavy tail’ that contains a significant part of the probability weight. In other words,
very large values of x have a significant probability to be drawn from the distribution,
and such large values play an essential role in the sum.

We focus on the regime where this effect is the strongest, which corresponds to
α < 1. Indeed, in this range of α, the average value 〈x〉 itself becomes infinite.
Considering N random values xi, i = 1, . . . ,N drawn from the distribution p(x), we
wish to compare the largest value in the set {xi} to the sum

∑N
i=1 xi. The typical value

of the maximum max(xi) can be evaluated as follows. Let us define

Fmax
N (z) ≡ Prob

(
max(x1, . . . , xN ) < z

)
. (2.94)

From the independence property of the xi’s, one has

Fmax
N (z) =

(∫ z

−∞
p(x) dx

)N

=
(

1 − F̃(z)
)N

, (2.95)

where we have defined the complementary cumulative distribution F̃(z) ≡ ∫ ∞
z

p(x) dx. As the typical value of max(x1, . . . , xN ) is large for large N , we can approx-
imate F̃(z) by its asymptotic behavior at large z:

F̃(z) ≈ c

zα
, z → ∞ (2.96)

where we have introduced explicitly the proportionality constant c. It follows that

ln
(

1 − F̃(z)
)N ≈ −cN

zα
(2.97)

so that
Fmax
N (z) ≈ e−cN/zα . (2.98)

In other words, Fmax
N (z) can be rewritten in the scaling form

Fmax
N (z) ≈ �

( z

N1/α

)
, (2.99)
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with �(u) = e−cu−α
, which indicates that the typical value of max(xi) is of the order

of N1/α, as Fmax
N (z) increases from 0 to 1 around z ≈ N1/α. Note that Eq. (2.99)

is precisely a definition of the notion of typical value: it is the value by which the
variable needs to be rescaled in the expression of the probability distribution (either
the cumulative probability distribution, or the probability density).

The observation that the typical value of z is of the order of N1/α has important
consequences on the sum

∑N
i=1 xi. Intuitively, one expects the typical value of the

sum to be proportional to the number N of terms. If α > 1, N1/α � N for large N ,
so that the largest term remains much smaller than the sum. In contrast, if α < 1,
N1/α � N , and the assumption that

∑N
i=1 xi is of the order of N breaks down, as the

sum is necessarily greater than its largest term (we recall that all terms are positive).
A more involved study shows in this case that the sum is of the order of the largest
term itself, namely

N∑
i=1

xi ∼ N1/α. (2.100)

It is then customary to say that the largest term ‘dominates’ the sum.
For 1 < α < 2, the situation is slightly more subtle: the largest term remains

much smaller than the sum, consistently with the finiteness of 〈x〉 which implies∑N
i=1 xi ∼ N〈x〉. However, the fluctuations of x remain large, as witnessed by the

divergence of the variance of x, which prevents the Central Limit Theorem for being
applicable—see Chap. 6.

2.4.2 Superdiffusive Random Walks

The above behavior of the statistics of a sum of broadly distributed random variables
has important consequences for anomalous diffusion processes. Let us start with the
superdiffusive case, which corresponds to a broad distribution of jump sizes. We
consider a discrete time random walk evolving according to xt+1 = xt + ut , where ut
is drawn from a symmetric distribution p(u). We assume that space is continuous, and
that the variables {ut} are independent and identically distributed random variables.
Accordingly, the position xt is given by

xt =
t−1∑
t′=0

ut′ (2.101)

where we have assumed that x0 = 0. The present problem is thus directly related
to problems of random sums. The symmetry of the distribution p(u) implies that
〈ut〉 = 0, from which 〈xt〉 = 0 follows. If 〈u2〉 is finite, one has

〈x2
t 〉 =

∑
t′,t′′

〈ut′ ut′′ 〉 = t〈u2〉 (2.102)

http://dx.doi.org/10.1007/978-3-319-42340-1_6
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where we have used the fact that the variables ut′ and ut′′ are statistically independent
for t′ �= t′′, implying 〈ut′ ut′′ 〉 = 0. Hence the mean-square displacement 〈x2

t 〉 is linear
in t, which corresponds to a normal diffusive process.

In contrast, if the distribution p(u) is broad, with an infinite variance, the above
reasoning fails, since the average values appearing in Eq. (2.102) are infinite. Let us
consider for definiteness a distribution p(u) such that

p(u) ∼ 1

|u|1+α
, u → ±∞ , (2.103)

with α < 2, so that 〈u2〉 is infinite—see Fig. 2.2 for an illustration. We can however
use a scaling argument inspired by Eq. (2.102), by using typical values instead of
average values:

xtyp(t)
2 ∼

t−1∑
t′=0

u2
t′ (2.104)

where we have neglected cross terms ut′ ut′′ (t′ �= t′′). The typical value of the square
displacement is thus the typical value of a sum of t independent random variables
yt′ ≡ u2

t′ . Using the relation

P(y) = p(u)

∣∣∣∣dudy
∣∣∣∣ , (2.105)

one finds that the distribution P(y) also has a power-law tail, satisfying

P(y) ∼ 1

y1+ α
2
, y → ∞ . (2.106)

Combining Eqs. (2.100) and (2.104), one then deduces that

xtyp(t) ∼ t1/α . (2.107)

Fig. 2.2 Illustration of a
superdiffusive random walk,
with a power-law
distribution of jump sizes, of
parameter α = 0.8—see
Eq. (2.103). The largest jump
is of the same order as the
total displacement, whatever
the chosen time window
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Hence the random walk has an anomalous behavior of its typical displacement,
xtyp(t) ∼ tβ , characterized by an exponent β = 1/α > 1/2 (since α < 2). The
walk is thus superdiffusive. Note that a more rigorous derivation of this result can be
carried out using the Generalized Central Limit Theorem, introduced in Chap. 6.

2.4.3 Subdiffusive Random Walks

On the contrary, subdiffusive walks have (in the simplest cases) a well-defined jump
length, but exhibit strong local trapping effects, so that the sojourn times on a given
site become broadly distributed, instead of being fixed to a value �t as in the above
superdiffusive example. We thus consider a random walk process in which the time
lag τ between two jumps is itself a random variable τ following a distribution p(τ ),
with a tail

p(τ ) ∼ 1/τ 1+α , τ → ∞ (0 < α < 1). (2.108)

After a time τ , the walker jumps to one of the two neighboring sites, namely xt+τ =
xt+εt , where εt = ±1 with equal probabilities. An illustration is provided in Fig. 2.3.

Here again, the behavior of the random walk can be understood through a simple
scaling argument. After N steps, the typical displacement xtyp

N of the walker is of the
order of

√
N . To relate N to the actual time t, one can observe that time t is the sum

of the N sojourn times τi at the ith position. Hence, using the estimation given in
Eq. (2.100), one finds

t =
N∑
i=1

τi ∼ N1/α (2.109)

Fig. 2.3 Illustration of a
subdiffusive random walk,
with a power-law
distribution of sojourn times
of parameter α = 0.8, as
defined in Eq. (2.108). The
largest sojourn time is
typically a finite fraction of
the total time window
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whence the scaling N ∼ tα follows. Combining this relation with xtyp
N ∼ N1/2, we

finally obtain
xtyp(t) ∼ tα/2 . (2.110)

The exponent β characterizing the anomalous diffusion is thus β = α/2 < 1/2 (we
recall that α < 1). The random walk is therefore slower than normal diffusion, or
in other words, subdiffusive. Note that this case is not a direct application of the
Generalized Central Limit Theorem, but there however exist rigorous methods to
derive the above scaling behaviors.

To conclude this section on anomalous diffusion, it is interesting to mention a
related situation which leads to a different scaling exponent. In the above subdiffusive
walk, the lag time τ between two successive jumps is drawn anew at each step, and
is independent of all the previous values of τ . However, thinking of the physical
situation of a particle randomly evolving in a complex (though one-dimensional)
potential energy landscape, one may identify the local minima of the potential with
the sites of a lattice. Jumps from one local minimum to a neighboring one occur
through thermal activation over the energy barrier separating the two minima. The
sojourn time in a minimum, given by an Arrhenius law, is exponential with respect to
the energy barrier, and is thus very sensitive to the value of the barrier. The presence
of an even relatively moderate range of values of the energy barriers may lead in
some regime to broad distributions of sojourn times. However, the main difference
with the case studied above is that the sojourn time is approximately the same at
each visit on the same site. This situation can be qualified as a ‘frozen disorder’.
The successive time lags are thus no longer statistically independent, as was the case
above. Hence the scaling argument needs to be modified accordingly. We still have
that the typical displacement after N steps is xtyp

N ∼ √
N . This means that the number

of distinct sites visited by the walk during N steps is also of the order of
√
N . Each

of these sites has been visited of the order of N/
√
N = √

N times. Hence the total
time t elapsed after N steps can be roughly approximated as

t ∼ √
N

√
N∑

i=1

τi (2.111)

(the upper bound in the sum should be understood as the integer part of
√
N). The

variables τi under the sum correspond to the (fixed) sojourn times in the
√
N distinct

visited sites, while the factor
√
N in front of the sum is the typical number of visits

per site. Altogether, we have if p(τ ) ∼ 1/τ 1+α when τ → ∞ (with α < 1) that

t ∼ √
N

1+ 1
α
. (2.112)

It follows that
√
N ∼ tα/(1+α), so that we finally obtain

xtyp(t) ∼ tβ , β = α

1 + α
<

1

2
, (2.113)
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resulting again in a subdiffusive motion, but with an exponent β different from the
exponent α/2 obtained in Eq. (2.110). Interestingly, one has

α

1 + α
>

α

2
(2.114)

so that the presence of fixed sojourn times on each site (frozen disorder) actually leads
to a faster motion than the ‘annealed’ case where the sojourn time is drawn anew at
each visit. This can be understood from the fact that only

√
N random variables τi

are drawn in the frozen disorder case, while N sojourn times are picked up in the
‘annealed’ case. Drawing more random variables typically leads to the exploration
of longer sojourn times τ , which slows down the dynamics.

2.5 Fast and Slow Relaxation to Equilibrium

2.5.1 Relaxation to Canonical Equilibrium

Up to now, we have mostly considered steady-state statistical properties, although
we already mentioned time dependent situations when considering random walks.
Here, we wish to explicitly discuss the convergence of the probability distribution of
configurations to the equilibrium distribution. To this aim, let us consider a stochastic
process with n energy states Ei, i = 1, . . . , n. The continuous time stochastic process
is defined by transition rates Wji from configuration i with energy Ei, to configuration
j with energy Ej (i �= j)—we use here matrix notations for the transition rates for
reasons that will become clear below. These transition rates are assumed to obey the
following detailed balance relation,

Wji e
−βEi = Wij e

−βEj (2.115)

for all pairs (i, j) (with β the inverse temperature), so that the equilibrium probability
distribution reads

Peq
i = 1

Z
e−βEi , Z =

n∑
j=1

e−βEj . (2.116)

The master equation Eq. (2.9) governing the probability Pi(t) to be in configuration
i at time t reads with the current notations

dPi

dt
=

∑
j (j �=i)

(
WijPj(t) − WjiPi(t)

)
. (2.117)
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Defining the coefficient Wii as

Wii = −
∑
j (j �=i)

Wji (2.118)

we can rewrite the master equation as

dPi

dt
=

n∑
j=1

WijPj(t) (2.119)

which shows that this equation takes the form of a matrix equation. We may thus
rewrite the equation more formally as

d

dt
P(t) = WP(t) (2.120)

where P(t) is the vector of components (P1(t), . . . ,Pn(t)) and W is the matrix
of elements (Wij), i, j = 1, . . . , n. In this form, finding the stationary distribution
amounts to an eigenvalue problem, namely finding the eigenvector Peq associated to
the eigenvalue λ = 0 of the matrixW. However, this matrix reformulation potentially
provides more information than just the stationary distribution. The other, nonzero,
eigenvalues (that can be shown to be negative) precisely describe the relaxation of
the distribution to the equilibrium value. Diagonalizing the matrix W, one eventually
obtains

P(t) =
n∑

j=1

eλj tQ(j) (2.121)

where the λj’s are the eigenvalues of the matrix W (labelled in decreasing order such
that λ1 = 0 and λn < · · · < λ2 < 0), and the Q(j)’s are vectors depending on the
eigenvectors ofW and on the initial distribution P(t = 0). It is clear from Eq. (2.121)
that P(t) converges to Q(1) when t → ∞, so that Q(1) identifies with the equilibrium
distribution Peq. Note that the normalization condition

∑n
i=1 Pi(t) = 1 implies that,

for j > 1,
n∑

i=1

Q(j)
i = 0. (2.122)

At large enough times, only the most slowly decreasing term in Eq. (2.121) con-
tributes on top of the equilibrium distribution, and the probability distribution can be
approximated as

P(t) ≈ Peq + e−λ2tQ(2) . (2.123)

These generic properties can easily be illustrated in the case of a two-state system
(n = 2). Given the normalization constraint P1(t) + P2(t) = 1, the evolution of the
probabilities can be expressed only in terms of P1(t), leading to
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dP1

dt
= −

(
W12 + W21

)
P1(t) + W12 (2.124)

whose solution is readily obtained as

P1(t) = Peq
1 + e−αt(P1(0) − Peq

1 ) (2.125)

with α = W12 + W21 and, assuming that the detailed balance relation (2.115) holds

Peq
1 = W12

W12 + W21
= e−βE1

e−βE1 + e−βE2
. (2.126)

In this simple case, the relaxation to equilibrium is purely exponential at all times,
and not only asymptotically at large times.

2.5.2 Dynamical Increase of the Entropy

Another way to characterize the relaxation to equilibrium is to show that relaxation
is accompanied by an increase of entropy, in agreement with the second law of
thermodynamics. To this aim, we first need to introduce a time-dependent entropy
defined as

S(t) = −
∑
C

P(C, t) lnP(C, t). (2.127)

This definition closely follows the definition (1.71). Coming back to usual notations
for the transition rates, we assume that W (C′|C) = W (C|C′), which is a specific
form of the detailed balance relation (2.12) associated to a uniform equilibrium
distribution over a subset of configurations (as in the microcanonical ensemble).
Under this assumption, one can show that S(t) is an increasing function of time. Let
us start by computing the time-derivative of the entropy:

dS

dt
= −

∑
C

dP

dt
(C, t) lnP(C, t) −

∑
C

dP

dt
(C, t). (2.128)

The last term cancels out due to the normalization condition
∑

C P(C, t) = 1. Using
the master equation, one has:

dS

dt
= −

∑
C

lnP(C, t)
∑

C′(�=C)

(−W (C′|C)P(C, t) + W (C|C′)P(C′, t)
)

=
∑

C,C′(C �=C′)

lnP(C, t)
(
W (C′|C)P(C, t) − W (C|C′)P(C′, t)

)
. (2.129)

http://dx.doi.org/10.1007/978-3-319-42340-1_1
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Exchanging the notations C and C′ in the last equation, we also have

dS

dt
=

∑
C,C′(C �=C′)

lnP(C′, t)
(
W (C|C′)P(C′, t) − W (C′|C)P(C, t)

)
. (2.130)

Summing Eqs. (2.129) and (2.130), and using the detailed balance property
W (C′|C) = W (C|C′), we obtain

dS

dt
= 1

2

∑
C,C′(C �=C′)

(
lnP(C′, t) − lnP(C, t)

) (
P(C′, t) − P(C, t)

)
W (C|C′).

(2.131)

As [lnP(C′, t)−lnP(C, t)] and [P(C′, t)−P(C, t)]have the same sign, one concludes
that

dS

dt
≥ 0. (2.132)

This is one possible statement, in the context of stochastic processes, of the second
law of thermodynamics. Moreover, in the stationary state, dS/dt = 0, and one
necessarily has for all pairs (C,C′) either Pst(C) = Pst(C′) or W (C|C′) = 0, where
Pst(C) is the stationary probability distribution. One then recovers, consistently with
the detailed balance assumption W (C′|C) = W (C|C′), the postulate of equilibrium
statistical mechanics stating that mutually accessible configurations have the same
probability.

More generally, for Markovian stochastic processes described by the master equa-
tion (2.9), it is always possible to define a functional S̃({P(C, t)}) that increases with
time, without need for detailed balance or microreversibility properties [1]. The gen-
eral definition of S̃({P(C, t)}) is

S̃(t) = −
∑
C

P(C, t) ln

(
P(C, t)

Pst(C)

)
. (2.133)

A drawback of this definition is that the stationary distribution Pst(C) needs to be
known in order to define S̃, which in many cases restricts the usefulness of the
functional S̃. Yet, a simple application of the generalized definition (2.133) of the
entropy is the case of the canonical ensemble. Using Pst ∝ e−βE , one finds

S̃(t) = βFeq + S(t) − β〈E(t)〉 (2.134)

where Feq is the (equilibrium) free energy, and S(t) the time-dependent entropy
defined in Eq. (2.127). This definition suggests to introduce a time-dependent free
energy F(t) as

F(t) = 〈E(t)〉 − TS(t) (2.135)
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with T = β−1 the temperature. In this way, one has

S̃(t) = β
(
Feq − F(t)

)
, (2.136)

leading to dF/dt ≤ 0. Hence the time-dependent free-energy is a decreasing function
of time. This result is consistent with the standard thermodynamic result that the free
energy of a system in contact with a thermostat can only decrease under spontaneous
evolution.

2.5.3 Slow Relaxation and Physical Aging

Although many systems converge to a stationary state on times shorter than or com-
parable to the observation time, it turns out that some systems do not reach a steady
state and keep evolving on time scales that can be very large compared to standard
observation times. This is the case for instance of glasses, which keep aging for years
or more, as well as in laser cooling experiments [7]. It is also likely that aging mech-
anisms, or slow relaxation effects, play a significant role in many different types of
complex systems. Even though the aging mechanisms may differ from one situation
to the other, it is certainly of interest to investigate one of the simplest known aging
phenomena, illustrated by the trap model, which we describe here within a generic
formalism that does not rely on a specific physical realization.

Let us consider a model system in which to each configuration C is associated a
given lifetime τ . This lifetime τ is the mean time spent in configurationC before mov-
ing to another configuration. As we consider only temporal aspects of the dynamics,
and not other types of observables (energy, magnetization,…), we simply label the
configurations by their lifetime τ . We then choose a simple form for the transition
rate W (τ ′|τ ), namely:

W (τ ′|τ ) = 1

τ
ψ(τ ′). (2.137)

The function ψ(τ ′) is the a priori probability distribution of the configurations τ ′,
meaning that the selected new configuration is chosen completely at random. From
the normalization condition

∫ ∞
0 dτ ′ψ(τ ′) = 1, we have

∫ ∞

0
dτ ′ W (τ ′|τ ) = 1

τ
, (2.138)

so that the characteristic escape time from a configuration with lifetime τ is precisely
τ , as it should. For simplicity, we also assume that all lifetimes τ are greater than a
value τ0, that we set to τ0 = 1 in the following. The master equation then reads:
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∂P

∂t
(τ , t) = −P(τ , t)

∫ ∞

1
dτ ′ W (τ ′|τ ) +

∫ ∞

1
dτ ′ W (τ |τ ′)P(τ ′, t)

= −1

τ
P(τ , t) + ψ(τ )

∫ ∞

1

dτ ′

τ ′ P(τ ′, t). (2.139)

At equilibrium, the probability to be in a configuration with lifetime τ is proportional
to τ and to the a priori distribution ψ(τ ) of configurations:

Peq(τ ) = 1

〈τ 〉τψ(τ ), (2.140)

where 〈τ 〉 is defined as

〈τ 〉 =
∫ ∞

1
dτ τ ψ(τ ). (2.141)

Similarly to the case of anomalous diffusion discussed in Sect. 2.4, the key ingredient
that determines the behavior of the process is the shape of the tail of the lifetime
distribution ψ(τ ). The most interesting situation corresponds to a distribution ψ(τ )

with a power-law tail. Here, for simplicity, we take a distribution with a pure power-
law form, namely

ψ(τ ) = α

τ 1+α
, τ > 1 (α > 0). (2.142)

An example of physical realization is the case of a particle trapped into potential
wells of random depth E, with an exponential distribution

ρ(E) = 1

E0
e−E/E0 . (2.143)

The lifetime τ is given by the standard Arrhenius law

τ = τ0 e
E/T , (2.144)

where τ0 = 1 is a microscopic time scale. Using the relation ψ(τ )|dτ | = ρ(E)|dE|,
one precisely finds the form (2.142) for ψ(τ ), with α = T/E0.

In the case α > 1, 〈τ 〉 is finite, but if α ≤ 1 then 〈τ 〉 is infinite, so that the
equilibrium distribution (2.140) does not exist, as it is not normalizable. As a result, no
stationary state can be reached, and the system keeps drifting towards configurations
with larger and larger lifetimes τ .

It is then of interest to determine the time-dependent probability distribution
P(τ , t) in the long-time regime. We postulate the following scaling form

P(τ , t) = 1

t
φ

(τ

t

)
. (2.145)
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From the normalization condition of P(τ , t), one has

∫ ∞

1
dτ P(τ , t) = 1

t

∫ ∞

1
dτ φ

(τ

t

)
= 1, (2.146)

from which one gets, with the change of variable u = τ/t,

∫ ∞

1/t
duφ(u) = 1. (2.147)

As φ(u) does not depend explicitly on time t, the above condition cannot be satisfied
for all t. But we are looking for an asymptotic large-t solution, so that we impose
that Eq. (2.147) is satisfied in the infinite t limit, namely

∫ ∞

0
duφ(u) = 1. (2.148)

As a result, the scaling form (2.145) is an approximate solution that becomes exact
when t → ∞. Equation (2.145) yields for the time derivative of P(τ , t):

∂P

∂t
= − 1

t2
φ

(τ

t

)
− τ

t3
φ′

(τ

t

)
, (2.149)

where φ′ is the derivative of φ. Multiplying Eq. (2.149) by t2, one obtains, with the
notations u = τ/t and v = τ ′/t,

− φ(u) − uφ′(u) = −1

u
φ(u) + ψ(ut) t

∫ ∞

1/t

dv

v
φ(v). (2.150)

Using the specific form (2.142) of ψ(τ ), we find

(
1 − 1

u

)
φ(u) + uφ′(u) + α

u1+α
t−α

∫ ∞

1/t

dv

v
φ(v) = 0. (2.151)

For the above equation to be well-defined in the infinite t limit in which it is supposed
to be valid, the explicit t-dependence has to cancel out. One thus needs to have

∫ ∞

1/t

dv

v
φ(v) ∼ tα, t → ∞, (2.152)

which requires that φ(v) has the following asymptotic form at small v:

φ(v) ≈ φ0

vα
, v → 0. (2.153)
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Here, φ0 is an unknown constant, to be determined later on from the normaliza-
tion condition of φ(u). The master equation is then finally written as the following
differential equation:

(
1 − 1

u

)
φ(u) + uφ′(u) + φ0

u1+α
= 0. (2.154)

This equation is a linear inhomogeneous differential equation, and its solution
can be found using standard techniques. The solution of Eq. (2.154) satisfying the
normalization condition (2.148) reads [8]

φ(u) = sin(πα)

�(α)

1

u
e−1/u

∫ 1/u

0
dv vα−1ev, (2.155)

where �(α) = ∫ ∞
0 xα−1e−xdx is the Euler Gamma function. It is rather easy to show

that φ(u) ∼ u−α for u → 0 as expected, and that φ(u) ∼ u−1−α for u → ∞, leading
for P(τ , t) to

P(τ , t) ∝ τψ(τ ), τ � t, (2.156)

P(τ , t) ∝ ψ(τ ), τ � t. (2.157)

These asymptotic behaviors can be interpreted rather easily: configurations with
lifetimes τ � t have been visited a large number of times, so that they are quasi-
equilibrated; in constrast, configurations with lifetimes τ � t have been visited at
most once, and the precise value of τ is not yet felt by the dynamics.
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Fig. 2.4 Energy barrier distribution in the aging regime of the trap model (T = Tg/2), for different
times t = 106 (full line), t = 107 (dashed line) and t = 108 (dot-dashed). The distribution drifts
toward larger energy barriers, logarithmically with time. The inset shows the same data on a semi-
logarithmic scale, to visualize the exponential tails
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In the physical example of the trap model defined by Eqs. (2.143) and (2.144),
the aging regime occurs for α = T/E0 < 1, so that Tg ≡ E0 turns out to be the glass
transition temperature. For T < Tg, the energy distribution p(E, t), obtained from
P(τ , t) by a simple change of variable, takes the scaling form p(E, t) = �(E−T ln t).
A logarithmic drift toward larger energy barriers is thus observed, as illustrated in
Fig. 2.4. The average energy is given by

E(t) ≈ E1 + T ln t (2.158)

where E1 is a temperature-dependent constant.
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Chapter 3
Statistical Physics of Interacting
Macroscopic Units

Until now, we have mainly considered physical systems, in which elementary units
are implicitly atoms or molecules. In this case, the laws of motion of the individual
particles are known, and the main difficulty consists in being able to change the scale
of description, going from the scale of particles to the system size.

However, our everydaylife experience tells us that there exist many familiar sys-
tems that are composed of interacting macroscopic units, that thus behave very dif-
ferently from atoms or molecules: examples range from sand piles, foams, bacteria
colonies, animal flocks, or road traffic, to quote only a few examples. In such cases,
it is clear that the interacting objects, or individuals, cannot be described in the same
way as molecules, and precise dynamical laws at the individual scale are most often
not known.

The difficulties encountered when trying to apply a statistical physics approach to
such assemblies of macroscopic units are then two-fold. On the one-hand, a model
should be given for the dynamics of individual, and it is often not clear how relevant or
reliable such modeling is to describe realistic systems. On the other hand, reasonable
models of individual dynamics usually do not have similar conservation laws and
time-reversal symmetry as the Hamiltonian dynamics of molecular systems. Hence it
is hard, even in specific cases, to build a statistical physics approach from a postulate
similar to the hypothesis of equiprobability of configurations having the same energy.
Interesting attempts in this direction, notably in the context of granular matter, have
however been proposed [1].

In this section, we illustrate on several examples how different statistical physics
techniques can be devised, in specific cases, to describe assemblies of interacting
units. In the first example (the dynamics of residential moves in a city, Sect. 3.1), a
mapping can be performed to an effective equilibrium system, yielding interesting
insights. In the second example (ZeroRange Process, Sect. 3.2), an explicit stationary
solution of the master equation can be found. Finally, the last example (collective
motion of active particles, Sect. 3.3) is studied through the so-called Boltzmann
equation, a generic approach that can be used when interactions are limited to binary
‘collisions’, that are very localized in space and time.
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3.1 Dynamics of Residential Moves

A standard example of complex system dynamics is the Schelling model which
represents in a schematic way the dynamics of residential moves in a city [2, 3]. The
city is modeled as a checkerboard, divided into cells. Two types of agents (say red
and green) live in the city. They reside in the cells of the checkerboard, with at most
one agent in each cell. Agents characterize their degree of satisfaction regarding their
environment by a utility, which is a given function (the same for all agents) of the
number of agents of the same type in their neighborhood. The neighborhood can be
defined in different ways. One possibility would be to consider the set of nearest
neighbors. However, most studies rather use the Morse neighborhood, that is the
3 × 3 (or sometimes 5 × 5) square surrounding the current cell.

Beforemoving, an agent chooses at random an empty cell, and evaluates the utility
unew associated to this new location. The agent compares this quantity to the utility
uold of his present location, by computing the utility difference �u = unew − uold.
The move is then accepted with probability 1/(1+ e−�u/T ). Here, T is a parameter
analogous to the temperature in physical systems, that characterizes the influence of
other factors, like the presence of facilities, shops, or friends, that are not explicitely
taken into account in the model, but could bias the decision of moving or not. At low
T , and for a large class of utility functions such that agents have a (possibly slight)
preference for being with agents of the same type, a segregation phenomenon is
observedwhen simulating themodel numerically: two types of domains form, namely
domains with a majority of red agents and domains with a majority of green agents.
Quite surprisingly, this segregation phenomenon seems quite robust, and is also
observed in the casewhere agents have amarked preference formixed neighborhood.

The Schelling model in its standard form is very hard to solve analytically, and
solutions are not presently known. The reason for these difficulties is mainly that
the neighborhoods of two neighboring cells overlap, generating complicated corre-
lations in the system. In order to find an analytical solution, a standard strategy is to
define a variant of the model on a specific geometry that avoids these correlations.
This strategy was for instance successful in the Ising model, by introducing a fully
connected version of the model (see Sect. 1.4.1): assuming that all spins interact
together, the phase transition could be obtained analytically in a simple way.

A straightforward application of this idea to the Schelling model a priori seems
to lead to a deadlock. If an agent evaluates its utility by considering the whole city as
its neighborhood, this utility will not change when moving within the city. A more
interesting strategy is then to divide the city into a large number of blocks, so that
agents evaluate their utility within blocks, and move from blocks to blocks. In this
way, correlations between blocks may be suppressed.

http://dx.doi.org/10.1007/978-3-319-42340-1_1
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3.1.1 A Simplified Version of the Schelling Model

In order to implement this strategy, we consider the following model, with a single
type of agent to further simplify the derivation (the case of two different types of
agents is briefly discussed below). The segregation phenomenon then corresponds
to the formation of domains of different densities. The city is divided into a large
number Q of blocks, each block containing H cells (a cell may be thought of as
representing a flat). We assume that each cell can contain at most one agent, so
that the number nq of agents in a given block q (q = 1, . . . , Q) satisfies nq ≤ H .
A microscopic configuration C of the city corresponds to the knowledge of the
state (empty or occupied) of each cell. For each block q, we also introduce the
density of agents ρq = nq/H . Each agent has the same utility function u(ρq), which
describes the degree of satisfaction concerning the density of the block it is living
in. The collective utility is defined as the total utility of all the agents in the city:
U (C) = ∑

q nqu(ρq).
A dynamical rule allows the agents to move from one block to another. At each

time step, one picks up at random an agent and a vacant cell, within two different
blocks. The agent moves in that empty cell with probability:

W (C ′|C) = 1

1 + e−�u/T
, (3.1)

where C and C ′ are the configurations before and after the move respectively, and
�u is the variation of the individual utility of the chosen agent, associated to the
proposed move. The parameter T has the same interpretation as in the standard
Schelling model.

It is interesting at this stage to emphasize the difference between the presentmodel
and standard physical approaches. It could seem at first sight that the utility is simply
the equivalent, up to a sign reversal, of the energy in physics. In the present model
however, an economics perspective is adopted, so that the agents are considered as
purely selfish. They make decisions only according to their own utility change �u,
and do not consider the potential impact of their decision on the other agents. In
contrast, in physical models, the probability for a particle to move depends on the
energy variation of the whole system, and the effect on the other particles is thus
taken into account from the outset. This has important consequences, as we shall see
below.

We wish to find the stationary probability distribution P(C) of the microscopic
configurations C . This is not an easy task in general. Yet, if we were able to show
that a detailed balance relation holds in this model, we would straightforwardly get
the solution. Let us assume that the individual cost �u can be written as �u =
F(C) − F(C ′), where F is a function on configuration space.1 From Eq. (3.1), we

1The relation �u = F(C) − F(C ′) is non-trivial, because the utility of a single agent cannot be
computed from the sole knowledge of the system configuration; one also needs to know who is the
considered agent, and this information is not included in the configuration C .
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find that the dynamics satisfies a detailed balance relation:

W (C ′|C)P(C) = W (C |C ′)P(C ′), (3.2)

with a distribution P(C) given by

P(C) = 1

Z
e−F(C)/T , (3.3)

where Z is the analog of a partition function. It can be shown that a function F
satisfying this condition is given by

F(C) = −
∑
q

nq∑
m=0

u(m/H). (3.4)

To characterize the “segregation” phenomenon, the full statistical information on the
occupation number of each cell is not necessary. Instead, an aggregated description
in terms of densities of the blocks turns out to be more useful. Such a coarse-grained
description is obtained by aggregating all configurations with the same number of
agents in each block. As there are H !/[n!(H − n)!] ways of ordering n agents in H
cells, we obtain the following coarse-grained probability distribution:

P̃(n1, . . . , nQ) = K̃ exp

(
−H

T

∑
q

f̃ (nq)

)
, (3.5)

with K̃ a normalization constant, and where we have introduced the function f̃ :

f̃ (n) = T

H
ln

(
n!(H − n)!

H !
)

− 1

H

nq∑
m=0

u
(m

H

)
. (3.6)

The above expression suggests to consider the limit of large H in order to get a
continuous formulation for f̃ . Keeping constant the density of each block ρq =
nq/H (ρq hence becoming a continuous variable) and expanding the factorials using
Stirling’s formula ln n! ≈ n ln n − n, valid for large n, one obtains for H → ∞

1

H
ln

(
nq !(H − nq)!

H !
)

→ ρq ln ρq + (1 − ρq) ln(1 − ρq). (3.7)

Similarly, the last term in the expression of f̃ converges to an integral:

1

H

nq∑
m=0

u
(m

H

)
→

∫ ρq

0
u(ρ′)dρ′. (3.8)
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In terms of density ρq , the stationary distribution P̃(n1, . . . , nQ) turns into a proba-
bility density P(ρ1, . . . , ρQ) given by (with

∑Q
q=1 ρq = Qρ0 held fixed):

P(ρ1, . . . , ρQ) = K exp

⎛
⎝−H

T

Q∑
q=1

f (ρq)

⎞
⎠ (3.9)

where K is a normalization constant, and where the function f (ρ) is defined as

f (ρ) = Tρ ln ρ + T (1 − ρ) ln(1 − ρ) −
∫ ρ

0
u(ρ′)dρ′. (3.10)

The function �(ρ1, . . . , ρQ) = ∑Q
q=1 f (ρq) may be called a potential, or a large

deviation function. It is also the analogue of the free energy functions used in physics.
The configurations (ρ1, . . . , ρQ) thatminimize the potential�(ρ1, . . . , ρQ) under the
constraint of fixed

∑Q
q=1 ρq are the most probable to come up. In the limit H → ∞,

these configurations are the only ones that appear in the stationary state, as the
probability of other configurations vanishes exponentially with H .

3.1.2 Condition for Phase Separation

Focusing on the large H case, the problem gets back to finding the set (ρ1, . . . , ρQ)

which minimizes the potential �(ρ1, . . . , ρQ) with the constraint
∑

q ρq fixed. We
are interested in knowing whether the stationary state is statistically homogeneous
or inhomogeneous. Following standard physics textbooks methods [4], the homo-
geneous state at density ρ0 is unstable against a phase separation if there exists two
densities ρ1 and ρ2 such that

γ f (ρ1) + (1 − γ) f (ρ2) < f (ρ0). (3.11)

The parameter γ (0 < γ < 1) corresponds to the fraction of blocks that would have
a density ρ1 in the segregated state. This condition simply means that the value of
the potential � is lower for the segregated state than for the homogeneous state,
so that the segregated state has a much larger probability to occur. Geometrically,
the inequality (3.11) corresponds to requiring that f (ρ) is a non-convex function
of ρ. The values of ρ1 and ρ2 are obtained by minimizing γ f (ρ′

1) + (1 − γ) f (ρ′
2)

over all possible values of ρ′
1 and ρ′

2, with γ determined by the mass conservation
γρ′

1 + (1 − γ)ρ′
2 = ρ0. The corresponding geometrical construction is called the

common tangent construction (see Fig. 3.1).
We now try to translate the convexity condition (3.11) into a condition on the

utility function u(ρ). Phase separation occurs if there is a range of density for which
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Fig. 3.1 Sketch of phase
separation: the system of
density ρ0 splits into two
phases of densities ρ1 and ρ2
to lower its free energy. The
densities ρ1 and ρ2 are
determined from the
common tangent
construction (dashed line) on
the free energy curve f (ρ)

(full line). The free energy of
the phase separated system is
given by the value of the
tangent at ρ = ρ0

f(
ρ )

ρ
0

ρ
1

ρ
2

f (ρ) is concave, namely f ′′(ρ) < 0. We thus compute the second derivative of f ,
yielding

f ′′(ρ) = T

ρ(1 − ρ)
− u′(ρ). (3.12)

For a given utility function, the sign of f ′′(ρ) can be checked explicitly. We note that
in the limit T → 0, f ′′(ρ) = −u′(ρ), so that the homogeneous state is stable (i.e.,
f ′′(ρ) > 0) if u(ρ) is a monotonously decreasing function of ρ.
The specific form of the utility function is an input of the model, and it can be

postulated on a phenomenological basis, or rely on a theory of the interactions among
agents. In order to analyze an explicit example of a non-linear utility function, we
consider the peaked utility function defined as:

u(ρ) =
⎧⎨
⎩
2ρ if ρ ≤ 1

2

2(1 − ρ) if ρ > 1
2

(3.13)

which is maximum for ρ = 1
2 (see left panel of Fig. 3.2). The expression of f (ρ)

can be easily deduced from u(ρ), and is illustrated on the right panel of Fig. 3.2 for
different values of T . To study the stability of the homogeneous phase, we look at
the sign of f ′′(ρ). One has for ρ < 1/2

f ′′(ρ) = T

ρ(1 − ρ)
− 2, (3.14)

and for ρ > 1/2:

f ′′(ρ) = T

ρ(1 − ρ)
+ 2. (3.15)
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Fig. 3.2 Left utility function defined in Eq. (3.13). Right corresponding effective free energy f (ρ),
for different values of temperature, T = 0, 0.2, 0.5 and 0.8 (from top to bottom), illustrating that
f (ρ) becomes non-convex for T < 0.5, which leads to a phase separation

It is easy to check that f ′′(ρ) is minimum for ρ → 1
2

−
, the corresponding value being

lim
ρ→ 1

2
−
f ′′(ρ) = 4T − 2. (3.16)

Thus, for T > 1/2, the function f (ρ) is convex on the whole interval 0 < ρ < 1 as
f ′′(ρ) > 0 on this interval, and the homogeneous phase is stable. On the contrary, for
T < 1/2, there exists an interval of density ρwhere f (ρ) is concave ( f ′′(ρ) < 0), so
that in the stationary state, the system is split into two phases with different densities.

The surprising phenomenon here is that a phase separation occurs even in the
case ρ = 1/2, although all agents have a significant preference for a half-filled
neighborhood. This can be understood intuitively as follows. At a small, but non-
zero temperature T , small fluctuations of density in the blocks are possible. Let us
assume that we start from the homogeneous state of density ρ = 1/2, with some
small fluctuations of this density around the mean value 1/2. If a block has a density
smaller that 1/2, then this block becomes less attractive for the agents living in it. So
some agents will start to move to the most attractive blocks which have exactly the
density 1/2. In doing so, the initial block becomes less and less attractive, thusmaking
more and more agents leave it. This avalanche process, which is related to the selfish
behavior of the agents, qualitatively explains the instability of the homogeneous state
with density 1/2.

Interestingly, this model can be slightly generalized to take into account a degree
of ‘altruism’ of the agents, in the sense that agents may also partially take into
account the cost imposed by their moves to the neighboring agents. This can be done
by replacing �u in Eq. (3.1) by a cost

C = �u + α(�U − �u) (3.17)
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where 0 ≤ α ≤ 1 is a weighting parameter, and �U is the total variation of utility
of all agents in the city. The effective free energy f (ρ) given in Eq. (3.10) is then
changed into

f (ρ) = Tρ ln ρ + T (1 − ρ) ln(1 − ρ) − αρu(ρ) − (1 − α)

∫ ρ

0
u(ρ′)dρ′. (3.18)

The case α = 1 is actually very similar to what happens in physics, if one maps the
agents’ utility onto the opposite of an energy. The introduction of this parameter α
has important consequences on the dynamics. It can be shown in particular that there
exists a threshold value αc such that for α > αc, the phase separation disappears and
the system remains homogeneous in steady state [3].

3.1.3 The ‘True’ Schelling Model: Two Types of Agents

To get closer to Schelling’s original model, we briefly mention the case where two
types of agents are included. We thus introduce agents of two colors such as ‘red’
and ‘green’. The two types of agents are labelled with subindexes ‘R’ and ‘G’ in the
following. To keep the model solvable, we assume that each type of agent is only
concerned about the density of agents of the same type in its neighborhood. Hence
the utility functions depend only on the density of the same type of agents, namely
uR(ρR) and uG(ρG). We consider here the original ‘selfish’ dynamics corresponding
to α = 0. The effective free energy defined in Eq. (3.10) can be generalized to

f (ρR, ρG) = TρR ln ρR + TρG ln ρG

+ T (1 − ρR − ρG) ln(1 − ρR − ρG)

− α
[
ρR uR(ρR) + ρG uG(ρG)

]

− (1 − α)
[ ∫ ρR

0
uR(ρ′)dρ′ +

∫ ρG

0
uG(ρ′)dρ′

]
. (3.19)

In order to determine the equilibrium configurations of the model, one needs to find
the set {ρqR, ρqG} minimizing the potential

F(ρ1R, . . . , ρQR, ρ1G, . . . , ρQG) =
∑
q

f (ρqR, ρqG) (3.20)

under the constraints that the total number of agents of each type is fixed, that is∑
q ρqR = Qρ0R and

∑
q ρqG = Qρ0G , where ρ0G and ρ0R are respectively the

overall densities of ‘green’ and ‘red’ agents.
Due to the constraint that the total density of agents (disregarding their type) has

to remain less that one, this model including two types of agents does not reduce to
two uncoupled models composed of a single type of agents. It is however possible
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to compute the stationary states. We consider again the small ‘temperature’ limit
T → 0, and assume for simplicity that the overall densities of ‘red’ and ‘green’
agents are equal, ρ0R = ρ0G = ρ0/2. One then finds a segregated state in which each
block contains a single type of agents, at density ρ0 [3].

3.2 Driven Particles on a Lattice: Zero-Range Process

Let us now turn to a different type of situation, involving alternative techniques.While
the above variant of the Schelling model could be dealt with by using a mapping to
an equilibrium system, in many cases such equilibrium methods are not sufficient
to solve the model, due for instance to the presence of fluxes in the system. One
must then resort to other kinds of approaches. Among possible approaches, one can
consider simple enough stochastic models for which an exact solution of the master
equation can be found in the steady state, although detailed balance is not satisfied.
A prominent example of such type of models is the so-called Zero-Range Process
(ZRP) [5], that we describe below. Another well-known example of exactly solvable
non-equilibrium model is the Asymmetric Simple Exclusion Process (ASEP), for
which the derivation of the solution is however much more technical [6].

3.2.1 Definition and Exact Steady-State Solution

In theZRP, N particles are randomly placed on the L sites of a one-dimensional lattice
with periodic boundary conditions,2 and can jump from site i to the neighboring site
i + 1 (with the convention L + 1 ≡ 1). Motion is thus biased, which generates a
current of particles along the ring. The interaction between particles is taken into
account through the fact that the probability per unit time to jump from site i to
site i + 1 depends on the current number ni of particles on site i ; this probability is
denoted as u(ni ).

A configuration of the ZRP is given by the setC = (n1, . . . , nL) of the occupation
numbers of all sites. The transition rate W (C ′|C) can be written formally as

W (n′
1, . . . , n

′
L |n1, . . . , nL) =

L∑
i=1

u(ni ) δn′
i ,ni−1 δn′

i+1,ni+1+1

∏
j �=i,i+1

δn′
j ,n j

(3.21)

where δn′,n is the Kronecker symbol, equal to 1 if n′ = n, and to 0 otherwise. Using
this form of the transition rate, one can write the corresponding master equation (see

2We consider here for simplicity the ring geometry, but the ZRP can actually be defined on an
arbitrary graph [7].
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Sect. 2.1), which we do not display here to lighten the presentation. It can be shown
[5] that the steady-state distribution takes a factorized form

P(n1, . . . , nL) = 1

Z

(
L∏

i=1

f (ni )

)
δ∑

j n j ,N (3.22)

where the Kronecker delta symbol accounts for the conservation of the total number
of particles. Inserting this form into the master equation, one obtains the expression
of f (n):

f (n) =
⎧⎨
⎩

∏n
k=1

1
u(k) if n ≥ 1,

1 if n = 0.
(3.23)

Note that the model can also be defined in such a way as to obtain any desired
function f (n) in the steady-state distribution: one simply needs to choose u(n) =
f (n − 1)/ f (n), for n ≥ 1.

3.2.2 Maximal Density and Condensation Phenomenon

One of the interesting properties of the ZRP is the presence of a condensation tran-
sition, where a finite fraction of the total number of particles gather on a single site.
Such a phenomenon appears in the case of a function f (n) decaying as a power-law,
f (n) ∼ 1/nα, or equivalently u(n) = 1+α/n+o(1/n). The single-site distribution
can be obtained by considering the rest of the system as a reservoir of particles, a
situation similar to the canonical ensemble at equilibrium. Assuming the system to
be homogeneous, the single-site distribution is then given by

p(n) = c f (n) e−μn (3.24)

where μ is the effective chemical potential of the reservoir. The normalization con-
stant c is determined by

1

c
=

∞∑
n=0

f (n) e−μn . (3.25)

The convergence of this sum requires that μ > 0 (or μ ≥ 0 if α > 1). The average
density

ρ = 〈n〉 = c
∞∑
n=1

n f (n) e−μn (3.26)

http://dx.doi.org/10.1007/978-3-319-42340-1_2
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is a decreasing function of μ, which thus reaches its maximum value ρc for μ → 0:

ρc = c
∞∑
n=1

n f (n) ∼
∞∑
n=1

1

nα−1
. (3.27)

Hence ρc is infinite ifα ≤ 2, and finite ifα > 2. As a result, ifα > 2, a homogeneous
density of particles cannot exceed a finite density ρc. If, on the contrary, one imposes
a density ρ0 > ρc, by including in the system a number of particles N > Lρc, the
dynamics will necessarily evolve toward a non-homogeneous state. It can be shown
[5] that the resulting state is composed of a ‘fluid phase’, homogeneous at density ρc,
and a ‘condensate’, that is a single site containing a macroscopic number of particles
L(ρ0 − ρc).

Applications of this model range from vibrated granular matter (each site corre-
sponding to a vibrated urn containing grains), to road traffic (sites being sections of
roads), or network dynamics (that is, the dynamics of attachment and detachment
of links on the network) [5]. Note that the ZRP is a very simplified model, so that
mapping it to more realistic situations often implies approximations.

3.2.3 Dissipative Zero-Range Process

To go beyond the simple Zero Range Process discussed above, it is interesting to
consider situations where on the one hand the geometry is more complex than the
simple one-dimensional ring, and on the other hand particles are exchanged with
reservoirs. The case of a single reservoir can be treated in a simple way by replacing
the Kronecker δ in Eq. (3.22) by an exponential factor exp(−μ

∑
j n j ), where μ is

the chemical potential of the reservoir. One finds in this case that the system remains
homogeneous for all values of the chemical potential: the condensation transition
occurs only in the case when the total number of particles is fixed. Amore interesting
situation corresponds to the case of two reservoirs. Then, depending on the properties
of the reservoirs, a steady flux of particles may be observed from one reservoir to the
other. Alternatively, one may also interpret the particles as fixed amounts of energy
that can be exchanged between different nodes of the lattice—the chemical potential
is then replaced by an inverse temperature. This is the interpretation we retain below,
where we combine a non-trivial geometry (a tree geometry) with the presence of two
reservoirs.

The model is defined as follows [8]. The network on which the dynamics takes
place is a tree composed of M successive levels. At each level j < M , each site has
a number m > 1 of forward branches linked to a node at level j + 1—see Fig. 3.3.
The number of nodes at a level j is equal to m j−1. Nodes are thus labeled by their
level index j , and by a further index i = 1, . . . ,m j−1 distinguishing the different
nodes present at the same level. It is convenient to think of each level of the tree as
a different length scale. Large length scales correspond to the top of the tree, and
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Fig. 3.3 Sketch of the
dissipative model,
illustrating the tree geometry
in the case of M = 3 levels
and m = 3 forward branches
per node

j=1

Injection

Transfer

j M

Dissipation

include a small number of degrees of freedom. On the contrary, the bottom of the
tree describes small length scales, and is associated to a large number of degrees of
freedom. To associate a length scale to each level j of the tree, it is convenient to
also introduce a quantity k j = m j−1, interpreted as a ‘pseudo-wave number’ in a
physics terminology. The corresponding length scale is then given by � j = 1/k j .

By connecting a high-temperature reservoir at large scales, and a low-temperature
one at small scales, the resulting model may be thought of as a dissipative system,
where energy is injected at large scales, and dissipated at small scales. Physical
examples of this broad class of systems include for instance hydrodynamic turbulence
[9], wave turbulence in fluids or in plasma [10], and vibrating plates [11, 12]. Of
course, the dissipative ZRP that we consider here is only a toy model, that cannot
account for all the complexity of these realistic systems.

We assume that each node can carry an energy taking only discrete values pro-
portional to a finite amount ε0, so that the energy ε j,i at node ( j, i) is equal to n j,iε0,
with n j,i an integer. The configuration of the system is thus described by the list of
all the n j,i ’s. Energy transfer within the tree proceeds by moving an amount ε0 of
energy along any branch linking level j and j + 1 with a rate (probability per unit
time) ν j = νkα

j , where ν is a constant parameter. Energy injection is modeled by

connecting an energy reservoir at temperature Text = β−1
ext to the level j = 1. The

frequency of exchanges is chosen to be equal to ν for simplicity (but the model can
be equally solved for an arbitrary value of this coupling to the reservoir). To model
dissipation, we assume that energy is randomly withdrawn from any node at level
M with a rate �M .

By solving the associated master equation, it can be shown that the stationary
probability distribution Pst({n j,i }) takes the form

Pst({n j,i }) = 1

Z

M∏
j=1

m j−1∏
i=1

e−β j n j,i ε0 (3.28)

where the parameters β j are effective inverse temperatures associated to level j of
the tree, and Z is a normalization factor. For the distribution Pst({n j,i }) to solve
the master equation of the model, the inverse temperatures β j have to satisfy the
following set of equations, expressed in terms of the parameters z j = exp(−β jε0):
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ν j−1(z j−1 − z j ) − mν j (z j − z j+1) = 0, j = 2, . . . , M − 1 (3.29)

with the boundary conditions

ν(e−βextε0 − z1) − mν1(z1 − z2) = 0, (3.30)

νM−1(zM−1 − zM) = �MzM . (3.31)

These equations can also be interpreted as the local balance of the diffusive currents
ν j (z j − z j+1) and the dissipative current �MzM . Note that if the dissipation �M is
set to zero, no more current flows in the system, leading to an equilibrium solution
with β1 = . . . = βM = βext. Solving Eqs. (3.29)–(3.31), two different temperature
profiles may be obtained in the large M limit depending on the value of α. For
α < −1, the temperature profile slowly converges to the constant value β j = βext

imposed by the reservoir. In contrast, for α > −1, the temperature profile converges
in the large M limit to a genuine nonequilibrium profile given by

β
neq
j = 1

ε0
(1 + α) ln k j + βext + 1

ε0
ln c, (3.32)

with c = 1+m−m−α. Note that the nonequilibriumprofileβ
neq
j is determined only by

parameters characterizing energy injection and transfer, and not by parameters related
to the dissipation mechanism. Interestingly, the temperature profile is continuous as
a function of α, in the sense that β j → βext when α → −1+.

To better understand the origin of this change of behavior around α = −1, one
can compute the mean energy flux � crossing the system,

� = ν
(
e−βextε0 − e−β1ε0

)
. (3.33)

In the limit M → ∞, this flux is found to be

� = ν

c
(m − m−α)e−βextε0 (3.34)

for α > −1 and � = 0 for α < −1. The energy flux � is plotted as a function
of α in Fig. 3.4, showing a continuous transition at the value α = −1. Hence the
emergence of a non-uniform temperature profile across scales is associated to the
existence of a finite injected and dissipated energy flux across the system. To sum
up, the system reaches a quasi-equilibrium state in the large size limit for α < −1,
while it reaches a true non-equilibrium state, with a finite energy flux, for α > −1.
A peculiar feature of this non-equilibrium state is that it explicitly depends on the
internal dynamics characterized by α, as can be seen on Eq. (3.32). In contrast,
the quasi-equilibrium state obtained for α < −1 does not depend on α (at least
asymptotically, for M → ∞); it is only characterized by the temperature βext of the
reservoir.
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Fig. 3.4 Dissipated flux �

as a function of α, for
different values D = 10−x

of the dissipation coefficient.
Parameters: m = 2, ν = 0.1,
βext = 1, ε0 = 1
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We have thus seen that the presence of a non-vanishing flux is a key ingredient
to generate a nonequilibrium steady state. At a qualitative level, the need for a flux
to sustain a nonequilibrium steady-state may be considered as a relatively general
feature of complex systems, which is not specific to the physical model considered
here, and may be found in very different contexts, like for instance in economics. As
an elementary example, a store cannot maintain its activity if the flux of sold products
is too low. This can be understood within the framework of a very simplified model
of store, in which only one type of product is sold. Let us call φ the flux of products,
that is, the number of products sold per unit time. The total profit made by the store is
simply P = φ�p−C0, where�p is the difference between buying and selling prices
of products, and C0 is the fixed cost per unit time for running the store (rent for the
building, employee wage, etc.). Of course, the activity of the store can be maintained
only if the profit P is positive. As a result, φ has to be larger than φc = C0/�p.
Hence a store is a non-equilibrium systemwhich needs a flux (of sold product) larger
than a threshold value to maintain a steady state.

3.3 Collective Motion of Active Particles

Active particles are particles able to sustain a continuous motion thanks to some
external energy input. This concept is used by physicists to describe for instance the
motion of animals, bacteria, or more recently different types of self-driven colloids
[13]. A very schematic model of active particle is a point-like particle with a velocity
vector of constantmodulus, but arbitrary direction. In the simplest cases, the direction
of motion of the particles just diffuses randomly, and one speaks about active Brown-
ian particles. Different types of interactionsmay be included between active particles,
like repulsion forces for instance. In this case, the interplay between self-propulsion
and repulsion leads to a phase separation, with the formation of dense clusters, as if
the particles had effective attractive interactions [14]. Besides, other types of inter-
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Fig. 3.5 Schematic representation of the dynamics of the model. Left self-diffusion of the velocity
angle; Right binary collision. See text for notations

actions which are specific to self-propelled particles can be included. This is the case
in particular of velocity-alignment interactions. A paradigmatic model for this type
of interactions between active particles is the so-called Vicsek model, that has been
extensively studied through numerical simulations [15–17]. A transition from disor-
dered motion when the density of active particles is low, to ordered collective motion
when the density is high, has been reported. This transition exhibits some properties
similar to that of phase transitions observed in physical systems. It is also possible
to develop analytical approaches, either by postulating phenomenological equations
of motion at the macroscopic scale (hydrodynamic equations) [18], or by using a
Boltzmann approach to derive such hydrodynamic equations [19]. We present here
a brief summary of the results obtained from the latter approach.

We consider self-propelled point-like particles moving on a continuous two-
dimensional space, with a velocity vector v of fixed magnitude v0 (to be chosen
as the speed unit) in a reference frame. The velocity of the particles is simply defined
by the angle θ between v and a given reference direction. Particles move in straight
line, following their velocity vector, until they experience either a self-diffusion event
(a random scattering), or a binary collision that tends to align the velocities of the
two particles—see Fig. 3.5. Self-diffusion events are defined as follows: the veloc-
ity angle θ of any particle is changed with a probability λ per unit time to a value
θ′ = θ + η, where η is a Gaussian noise with distribution p0(η) and variance σ2

0.
Binary collisions, that are the only interactions between particles, occur when the dis-
tance between two particles becomes less than d0 (in the following, we set d0 = 1

2 ).
The velocity angles θ1 and θ2 of the two particles are then changed into θ′

1 = θ + η1
and θ′

2 = θ + η2, as shown on Fig. 3.5. In the last expression, θ = arg(eiθ1 + eiθ2)
is the average angle, and η1 and η2 are independent Gaussian noises with the same
distribution p(η) and variance σ2. Note that these binary collisions are different from
the collisions in usual gases, as in this latter case, collisions are ruled by energy and
momentum conservation laws. In the following, we take for simplicity identical dis-
tributions p0(η) and p(η); a single parameter σ thus characterizes the amplitude of
the noise.

3.3.1 Derivation of Continuous Equations

A useful mathematical tool to describe statistically the dynamics of the system is
the one-particle phase-space distribution f (r, θ, t), namely the probability to find
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a particle at position r and with a velocity angle θ, at time t . The evolution of this
one-particle phase-space distribution is ruled by theBoltzmann equation,which reads

∂ f

∂t
(r, θ, t) + e(θ) · ∇ f (r, θ, t) = Idif [ f ] + Icol[ f ]. (3.35)

The functionals Idif [ f ] and Icol[ f ] respectively account for the self-diffusion and col-
lision phenomena. The vector e(θ) is the unit vector in the direction θ. The diffusion
functional Idif [ f ] is given by

Idif [ f ] = −λ f (r, θ, t) + λ

∫ ∞

−∞
dη p(η) f (r, θ − η, t). (3.36)

The evaluation of the collision term Icol[ f ] ismore subtle.We know that two particles
collide if their distance becomes less than the interaction range d0. In the frame of
particle 1, particle 2 has a velocity v′

2 = e(θ2) − e(θ1). Hence, particles that collide
with particle 1 between t and t + dt are those that lie, at time t , in a rectangle of
length |v′

2| dt and of width 2d0, yielding for the collision functional (the collision
area does not change going back to the lab frame)

Icol[ f ] = − f (r, θ, t)
∫ π

−π

dθ′ |e(θ′) − e(θ)| f (r, θ′, t) (3.37)

+
∫ π

−π

dθ1

∫ π

−π

dθ2

∫ ∞

−∞
dη p(η) |e(θ2) − e(θ1)|

× f (r, θ1, t) f (r, θ2, t)δ2π(θ + η − θ),

with θ = arg(eiθ1 + eiθ2), and δ2π a generalized Dirac distribution taking into
account the periodicity of angles. One can check that the uniform angular distri-
bution f (r, θ, t) = ρ/2π is a solution of Eq. (3.35) for an arbitrary constant density
ρ, and for any value of the noise amplitude σ.

In order to deal with convenient physical quantities, we introduce the hydrody-
namic density and velocity fields ρ(r, t) and u(r, t):

ρ(r, t) =
∫ π

−π

dθ f (r, θ, t), (3.38)

u(r, t) = 1

ρ(r, t)

∫ π

−π

dθ f (r, θ, t) e(θ). (3.39)

Integrating the Boltzmann equation (3.35) over θ, one directly obtains the continuity
equation for ρ(r, t):

∂ρ

∂t
+ ∇ · (ρu) = 0. (3.40)
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The operator ∇ is the vectorial differential operator3 of components (∂/∂x , ∂/∂y).
The derivation of a hydrodynamic equation for the velocity field is less straightfor-
ward, and involves an approximation scheme. The reader is referred to Refs. [19,
20] for more details on the derivation. The principle of the derivation is to expand
the distribution f (r, θ, t) into angular Fourier modes according to4

f (r, θ, t) = 1

2π

∞∑
k=−∞

fk(r, t) e−ikθ, (3.41)

where the Fourier coefficients fk are defined as

fk(r, t) =
∫ π

−π

dθ f (r, θ, t) eikθ. (3.42)

Note that f0(r, t) is nothing but the local density ρ(r, t). Note also that for all k,
f−k = f ∗

k (the star denotes the complex conjugate), since f (r, θ, t) is real.
The Boltzmann equation can in turn be expanded into Fourier modes, leading to

∂ fk
∂t

+ v0

2
(∂ fk−1 + ∂∗ fk+1) = −(1 − Pk) fk +

∞∑
q=−∞

Jk,q fq fk−q (3.43)

where we have used the shorthand notation ∂ and ∂∗ for the complex differential
operators

∂ ≡ ∂

∂x
+ i

∂

∂y
, ∂∗ ≡ ∂

∂x
− i

∂

∂y
. (3.44)

The coefficient Jk,q is given by Jk,q = Pk(σ)Ik,q − I0,q , where Ik,q is defined by the
integral

Ik,q = 1

π

∫ π

−π

dx
∣∣∣sin x

2

∣∣∣ e−iqx+ikx/2 (3.45)

with Pk(σ) = ∫ ∞
−∞ dη Pσ(η) eikη the Fourier transform of the noise distribution

(restricted here to integer values of k). One has 0 ≤ Pk(σ) ≤ 1 and Pk(0) = 1, ∀k.
For a Gaussian noise distribution, the Fourier transform has the simple form

Pk(σ) = e−σ2k2/2. (3.46)

3More explicitly, Eq. (3.40) reads

∂ρ

∂t
+ ∂

∂x
(ρux ) + ∂

∂y
(ρuy) = 0,

where (ux , uy) are the components of the vector u.
4Here, i is a complex number such that i2 = −1.
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To proceed further, it is necessary to identify the linear instability of the disordered
state, corresponding to an isotropic distribution for which fk = 0 for all k �= 0. This
linear instability occurs for a critical value ρc which depends on the intensity of the
noise. For an average density ρ0 slightly above ρc, one assumes that the distribution
f (r, θ, t) is still close to an isotropic distribution, and makes a scaling ansatz for
the different fields at stake, as a function of a small parameter ε characterizing the
distance to the threshold density,

f1 ∼ ε, f2 ∼ ε2, ρ − ρ0 ∼ ε. (3.47)

One also needs to make similar assumptions about the space and time derivatives. A
coherent scaling ansatz turns out to be

∂ ∼ ε,
∂

∂t
∼ ε, (3.48)

consistently with the propagative nature of the dynamics. The Boltzmann equation,
expressed in Fourier modes, is then truncated to order ε3, neglecting terms of order ε4

or higher. This results in two coupled equations for f1 and f2. The Fourier coefficient
f1 is a complex number having real and imaginary parts equal to components of the
pseudo-momentum field w(r, t) = ρ(r, t)u(r, t). Hence this is the relevant field we
need to keep in the description to characterize the emergence of polar order. The
second Fourier coefficient f2 actually has a much faster relaxation dynamics than
f1. Using this separation of time scales, one can express f2 as a function of f1, and
obtain in this way a closed equation for the evolution of f1 (which is however still
coupled to the density ρ, the other relevant field).

Mapping complex numbers onto vectors, we end up with the following hydrody-
namic equations:

∂w
∂t

+ γ(w · ∇)w = −1

2
∇(ρ − κw2) (3.49)

+ (μ − ξw2)w + ν�w − κ(∇ · w)w

with � the Laplacian operator,

� ≡ ∂2

∂x2
+ ∂2

∂y2
. (3.50)

It is interesting to give a physical interpretation of the different terms appearing in this
hydrodynamic equation. The first term in the r.h.s. of Eq. (3.49) can be interpreted as
a pressure gradient, considering p = 1

2 (ρ−κw2) as an effective pressure. The second
term accounts for the local relaxation of w, while the third term is analogous to the
standard viscous term appearing in the Navier-Stokes equation describing usual flu-
ids. Finally, the last term corresponds to a feedback on the flow from compressibility
effects.
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The different coefficients appearing in Eq. (3.49) can be computed explicitly as a
function of the microscopic parameters of the model. They are given by [19]

ν = 1

4

[
λ

(
1 − e−2σ2

0

)
+ 4

π
ρ

(
14

15
+ 2

3
e−2σ2

)]−1

, (3.51)

γ = 8ν

π

(
16

15
+ 2e−2σ2 − e−σ2/2

)
, (3.52)

κ = 8ν

π

(
4

15
+ 2e−2σ2 + e−σ2/2

)
, (3.53)

μ = 4

π
ρ

(
e−σ2/2 − 2

3

)
− λ

(
1 − e−σ2

0/2
)

, (3.54)

ξ = 64ν

π2

(
e−σ2/2 − 2

5

) (
1

3
+ e−2σ2

)
. (3.55)

Note that ν, γ and κ are always positive; μ can change sign, and ξ > 0 whenever
μ > 0.

3.3.2 Phase Diagram and Instabilities

Turning to the study of the spontaneous onset of collective motion in the present
model, we look for possible instabilities of the spatially homogeneous flow, that is
the appearance of a uniform, nonzero, velocity field u (or pseudo-momentum field
w). Considering a time-dependent, but spatially homogeneous flow, we get

∂w
∂t

= (μ − ξw2)w. (3.56)

Obviously, w = 0 is a solution for arbitrary values of the coefficients. However, this
solution becomes unstable forμ > 0, when a nonzero solutionw0 = √

μ/ξ e appears
(e is a unit vector pointing in a arbitrary direction). From the expression (3.54) of μ,
it turns out that μ = 0 corresponds to a threshold value ρt given by

ρt = πλ(1 − e−σ2
0/2)

4(e−σ2/2 − 2
3 )

. (3.57)

The transition line defined by ρt in the plane (ρ,σ) is plotted on Fig. 3.6. The insta-
bility is seen to occur at any density, provided the noise is low enough. The transition
line saturates at a value σt = (2 ln 3

2 )
1/2 ≈ 0.90.

Further instabilities leading to more complicated patterns, like travelling solitary
waves are also observed, both at the level of the hydrodynamic equations [19] and
in numerical simulations of the Vicsek model [16]. These instabilities occur in the
parameter region denoted as B in Fig. 3.6.
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Fig. 3.6 Phase diagram of the hydrodynamic equation (3.49) in the noise-density plane (λ = 1,
d0 = 0.5, v0 = 1). A transition line (full line) separates the domains with zero hydrodynamic
velocity (region A), from the domain where collective motion occurs (regions B and C). In region
C, homogeneous motion is stable (except if one goes to high density and low noise, in which case a
further instability—not shown here—appears). In region B, homogeneous motion is unstable, and
one observes solitary waves of high density moving over a disordered background

3.3.3 Varying the Symmetries of Particles

A similar approach can be used in models having different symmetries from the ones
considered here. For instance, considering an experiment with vibrated rice grains,
one observes that these vibrated elongated grains have a tendency to move back and
forth along their main axis preferentially. Similarly to the self-propelled particles
considered in the previous section, such particles can also be attributed a direction
characterized by an angle θ (we are still considering a two-dimensional problem), but
their internal symmetry renders the directions θ and θ + π equivalent. Interactions
between grains also tend to align closeby grains, but they need to take into account
the equivalence of the directions θ and θ + π, called nematic symmetry.

To model such an experimental situation, we consider a model of point-like par-
ticles quite similar to the one introduced previously, but taking into account the
nematic symmetry. At each elementary time step, particles move randomly either in
the θ or in the θ + π direction with equal probability. Upon a collision, the angles
θ1 and θ2 of the two particles are changed into θ′

1 = θ + η1 and θ′
2 = θ + η2, where

now θ = arg(ei θ̃1 + ei θ̃2) is the average angle obtained by choosing θ̃1 = θ1[π] and
θ̃2 = θ2[π] such that |θ̃2 − θ̃1| < π

2 . As before, η1 and η2 are independent Gaussian
noises with the same distribution p(η) and variance σ2.

Thismodel can be studied following the same lines [20, 21] as for the polar case by
writing a Boltzmann equation, which takes a form similar to Eq. (3.35), but includes
diffusion terms (of second order in space derivative) instead of the drift terms (of first
order in space derivative), since particles are diffusingwith no netmotion. Integrating
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the Boltzmann equation over the angles yields the following evolution equation for
the density ρ (making an appropriate choice of units):

∂ρ

∂t
= 1

2
�ρ + 1

2
Re(∂∗2 f2), (3.58)

where f2 is the complex field describing nematic order. To derive an evolution equa-
tion for this order parameter f2, a procedure similar to the one used in Sect. 3.3.1
is used. Namely, one expands the Boltzmann equation in Fourier space, identifies
the linear instability threshold and determines a consistent scaling ansatz close to
threshold. Note that quite importantly, all odd Fourier coefficients f1, f3, etc. are
equal to zero due to the nematic symmetry. The relevant order parameter is thus the
second Fourier coefficient f2, and keeping the next Fourier coefficient f4 in the trun-
cation procedure turns out to be important to obtain the nonlinear terms saturating
the instability. The relevant scaling ansatz reads in this case

f2 ∼ ε, f4 ∼ ε2, ρ − ρ0 ∼ ε, ∂ ∼ ε,
∂

∂t
∼ ε2, (3.59)

now corresponding to a diffusive space-time scaling, in line with the diffusive nature
of the dynamics. After truncation and closure, one eventually obtains the following
equation for the nematic field f2

∂ f2
∂t

= (μ − ξ| f2|2) f2 + 1

2
� f2 + 1

4
∂2ρ, (3.60)

where the coefficients μ and ξ can be expressed as a function of the density and
of microscopic parameters of the models [21]. Here again, μ is negative below a
threshold density ρt (σ), and positive above. It is interesting to note that this equation
is a generalization of the standard Ginzburg-Landau equation [22], with a coupling
to the density field in the term linear in f2. The phase diagram of this equation is quite
similar to that of the polar case, replacing polar order by nematic order. In particular,
the linear instability line in the noise-density plane has a shape similar to that shown
in Fig. 3.6 for the polar case. One of the main differences is that the high density
travelling bands appearing in the polar case are replaced in the nematic case by high
density bands that do not move, and that are now oriented along the axis of order
(while polar order is perpendicular to the band in the polar case). Quite importantly,
these bands are themselves unstable for large enough systems, leading to a regime
of spatiotemporal chaos in which long-range nematic order cannot build up; order is
only restored going to higher density or lower noise.

Note that other cases with ‘mixed’ symmetries can also be considered [20], for
instance self-propelled particles interacting nematically, a case sometimes called
‘self-propelled rods’ with experimental realizations, e.g., in biological systems like
colonies of bacteria [23].
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Chapter 4
Beyond Assemblies of Stable Units

In the previous section, we have focused on assemblies of interacting units. Such units
may correspond to very different underlying basic systems, ranging from passive or
active particles to social agents as in the Schelling model. In spite of these differences,
all these units shared the important property of being stable, in the sense that each of
them has specific given properties, that remain valid at any time. They thus constitute
permanent building blocks of the system. s In the present chapter, we aim at going one
step further by considering situations where the elementary units are not necessary
stable in the above sense. This includes cases where particles may be created or
annihilated like in reaction-diffusion processes (Sect. 4.1), as well as situations where
the individual properties evolve on long time scales (Sect. 4.2), like in biological
evolution (which also incorporates birth and death processes). Besides, instead of
considering the particles themselves, one can consider the graph of their interactions.
This is a complex, dynamically evolving object, whose links are not conserved but
can be added and deleted in a random way. This motivates the presentation of some
basic results on random graphs in Sect. 4.3, focusing on static aspects.

4.1 Non-conserved Particles: Reaction-Diffusion Processes

Reaction-diffusion processes are simplified models describing the evolution with
time of an assembly of different types of molecules that diffuse and chemically react
upon encounter. Particle types are usually described by letters, ‘A’, ‘B’, ‘C’, etc.
Transition rates in reaction-diffusion models are often written in terms of chemical
reactions, like A+ B → C , or 2A → ∅. Many reaction-diffusion models are defined
on a lattice, in such a way that all particles sit on a node of the lattice. A microscopic
configuration of the system is then given by the list of the numbers nA

i , nB
i , nCi , etc. of

particles A, B, C, . . . on node i . In some models, an exclusion principle is present,
so that at most one particle can lie on a given site. In this case, it is convenient to
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represent the configuration of the system by introducing a local variable qi = 0, 1,
2, 3, . . . corresponding respectively to having zero particle, a particle A, a particle
B, or a particle C on site i .

In the following, we consider reaction-diffusion models with a single type of parti-
cles, denoted as A, and we discuss two different types of mean-field approaches. The
first one is the most common one, which simply consists in writing non-linear evolu-
tion equations for the density field ρ of particles A. This approach is a mean-field one
in the sense that some correlations between particles are neglected. In addition, such
an approach describes local average values, and does not account for density fluctu-
ations. To deal with fluctuations, a second approach is to consider a fully-connected
model, in which any particle can interact with any other particle, and to determine the
distribution of the number of particles in the system. Such an approach, accounting
for fluctuations, however looses spatial information. It effectively amounts to work-
ing in an infinite-dimensional space, similarly to the fully-connected Ising model.

4.1.1 Mean-Field Approach of Absorbing Phase Transitions

For definiteness, we will consider a simple example of reaction-diffusion model,
described by the following three reactions:

A → 2A with rate κ, (4.1)

A → ∅ with rate ν, (4.2)

2A → A with rate λ. (4.3)

The precise meaning of the rates κ, ν and λ will appear below. We further assume that
particles A diffuse in space with a diffusion coefficient D. We now wish to determine
an evolution equation for the density field ρ(r, t) describing the average number of
particles in a small volume around point r. The rate of change of the density resulting
from reaction (4.1) is simply given by κρ, since for each particle already present in the
system, a new particle is created with probability κ per unit time. Similarly, the rate
of change associated to reaction (4.1) is equal to −νρ, corresponding to a decrease
of density with rate ν. These contributions to the evolution of ρ do not involve any
approximation, being linear terms. Approximations become necessary when dealing
with interactions between particles. This is the case for reaction (4.3), which involves
the encounter of two particles. Strictly speaking, the probability to find two particles
at the same point r is a quantity that depends on correlations between the positions
of particles, and that can thus not be expressed in a direct way as a function of the
density field. As a first approximation, one can however neglect correlations and
simply express the probability to find two particles in r at time t as the square of the
density ρ(r, t). The rate of change of the density resulting from reaction (4.3) thus
simply reads −λρ2. Taking also into account the diffusion of particles, we end up
with the following evolution equation for the density field,
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∂ρ

∂t
= (κ − ν)ρ − λρ2 + D�ρ (4.4)

where � is the Laplacian operator.1 The diffusion term tends to smooth out spatial
heterogeneities of the density field. In the limit of a uniform field, Eq. (4.4) reduces
to

∂ρ

∂t
= (κ − ν)ρ − λρ2. (4.5)

When κ < ν, the state ρ = 0 is the only stationary state, and it is linearly stable as
can be checked easily by linearizing Eq. (4.5) around ρ = 0. In contrast, for κ > ν,
the state ρ = 0 becomes unstable, and a new stationary state emerges, given by

ρ0 = κ − ν

λ
(κ > ν). (4.6)

A straightforward stability analysis shows that this state ρ0 is linearly stable. The
transition occuring at κ = ν is called an absorbing phase transition. The state ρ = 0
is denoted as the absorbing phase for κ < ν, while the phase ρ0, present for κ > ν,
is called the active phase. Absorbing phase transitions constitute one of the major
types of out-of-equilibrium phase transitions. Similarly to equilibrium phase tran-
sitions, they are characterized by a diverging correlation length ξ, and by a set of
critical exponents, leading to the identification of universality classes. An important
difference with respect to equilibrium phenomena is the role played by time, since
a detailed characterization of absorbing phase transitions involves space-time tra-
jectories, leading to the introduction of a correlation time τ . For a d-dimensional
system, the phase transition is thus characterized as a (d + 1)-dimensional process.
Denoting as ε the control parameter of the transition (ε ≡ κ − ν in Eq. (4.4)), the
stationary density ρ0 in the active phase ε > 0 scales as ρ0 ∼ εβ , which defines the
exponent β. Two other critical exponents are associated to the correlation length and
time, which respectively scale as ξ ∼ |ε|−ν⊥ and τ ∼ |ε|−ν|| . Notations ν⊥ and ν||
are standard, and come from the geometrical interpretation of the spatio-temporal
process in a (d + 1)-dimensional space. Universality classes are determined (in the
simplest cases) by the set of critical exponents (β, ν⊥, ν||). Note that similarly to
equilibrium phase transitions, the exponents characterizing the critical divergence of
length and time correlations are equal above and below the transition.

The prominent universality class for absorbing phase transitions is called Directed
Percolation, often abbreviated as DP. Other universality classes also exists, for
instance for systems with conservation laws [1]. The reaction-diffusion process
described by Eqs. (4.1)–(4.3) is a typical example of a process belonging to the
DP universality class [1]. Equation (4.4) is thus a mean-field representation of the
DP class. One sees from Eq. (4.6) that the mean-field value of the β exponent for
the DP class is βMF = 1. The mean-field value of the exponent ν|| can also be easily

1The Laplacian operator is defined as � = ∂2/∂x2 in one dimension, � = ∂2/∂x2 + ∂2/∂y2 in
two dimensions, and � = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 in three dimensions.
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determined from Eq. (4.5). In the inactive phase ε ≡ κ − ν < 0, the density decays
to zero and is thus asymptotically described by the linearized equation ∂ρ/∂t = ερ
(with ε < 0), whose solution is

ρ(t) ∝ e−|ε|t . (4.7)

As the correlation time is defined by ρ(t) ∝ e−t/τ , it follows from Eq. (4.7) that
τ = |ε|−1, resulting in a mean-field exponent νMF

|| = 1. Finally, scaling arguments
performed on Eq. (4.4) allows the mean-field value of the exponent ν⊥ to be deter-
mined as well, yielding νMF

⊥ = 1
2 [1]. Using field-theoretical arguments, one can

show that these mean-field exponents are correct in space dimension d ≥ dc = 4,
where dc is the upper critical dimension. For d < 4, the exponents β, ν⊥ and ν||
differ from their mean-field values.

4.1.2 Fluctuations in a Fully Connected Model

The description of reaction-diffusion processes through Eq. (4.4) is purely determin-
istic, and provides no information about fluctuations, for instance the fluctuations of
the total number of particles in the system. To go beyond this purely deterministic
description, we now study the Markov process associated to the reaction rules (4.1)–
(4.3) in a fully-connected geometry, meaning that any pair of particles in the system
has at any time the same probability to react. In this very simplified setting, the only
stochastic variable in the system is thus the total number n of particles (by contrast,
a density field ρ(r, t) is used in the above deterministic mean-field description). The
stochastic evolution of the number n of particles under the reactions (4.1)–(4.3) is
described by the following transition rates:

W (n → n + 1) = κn (4.8)

W (n → n − 1) = νn + λ

V
n(n − 1). (4.9)

Note that in this fully-connected geometry, one needs to rescale the rate λ by the
volume V of the system in order to obtain a well-defined infinite volume limit. The
probability Pn(t) to have a number n of particles at time t then obeys the master
equation

dPn

dt
= −

(
(κ + ν)n + λ

V
n(n − 1)

)
Pn + κ(n − 1)Pn−1

+
(

ν(n + 1) + λ

V
n(n + 1)

)
Pn+1, (4.10)

with the convention that P−1 = 0. Let us first note that the absorbing state Pas
n

defined by Pas
0 = 1 and Pas

n = 0 for n ≥ 1 is a solution of Eq. (4.10) for all values
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of the parameters. This solution is stable by definition of the absorbing state: once
all particles have be annihilated, there is no way to create new particles and thus
to change state. This result seems to contradict the mean-field result of Sect. 4.1.1,
according to which an active phase is present for κ > ν. The reason for this is that
the mean-field approach neglects fluctuations, and that the absorbing state may be
reached when κ > ν only through atypically large fluctuations, as shown below.
This suggests that the active phase is actually a long-lived metastable state, with as
we will see, a lifetime that diverges exponentially with the volume of the system.

The metastable active state can be approximately described by a probability Pms
n

such that Pms
0 = 0, thus excluding the state with no particle. From Eq. (4.10), we

have that
dP0

dt
= νP1. (4.11)

Hence the assumption of a metastable state is consistent only if Pms
1 is very small, so

that P0 remains close to zero for a very long time.
In the large volume limit, we assume that the probability distribution Pms

n takes a
large deviation form [2] (see Sect. 6.3 for more details):

Pms
n ∝ e−Vφ(ρ) (n > 0), (4.12)

where ρ = n/V is the (fluctuating) density, and φ(ρ) is a large deviation function.
Note that due to the normalization of the probability density, one has φ(ρ) ≥ 0 for all
ρ. In order to use the large deviation form of Pms

n in Eq. (4.10), we need to determine
Pms
n±1, which can be done by a first order expansion of φ, namely

Pms
n±1 ∝ e−Vφ(ρ± 1

V ) ≈ e−Vφ(ρ) e∓φ′(ρ). (4.13)

Expressing n as a function of ρ everywhere in Eq. (4.10), one finds in the limit
V → ∞, after rearranging the terms

(νρ + λρ2) e−2φ′(ρ) − [(κ + ν)ρ + λρ2] e−φ′(ρ) + κρ = 0. (4.14)

The fact that a well-defined equation is obtained in the limit V → ∞ shows that
the assumption of a large deviation form for the distribution Pms

n is consistent. The
quadratic equation (4.14) for the variable e−φ′(ρ) can be solved, yielding two potential
solutions, the relevant one being

e−φ′(ρ) = κ

ν + λρ
. (4.15)

We thus end up with

φ′(ρ) = ln
ν + λρ

κ
. (4.16)

http://dx.doi.org/10.1007/978-3-319-42340-1_6
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We already see from this equation that for κ > ν, the solution ρ0 found in Eq. (4.6)
yields φ′(ρ0) = 0, and thus corresponds to the most probable value of ρ, consistently
with the deterministic mean-field picture developed in Sect. 4.1.1. That ρ0 is indeed a
minimum of φ (a maximum of the probability distribution) can be checked explicitly
using the results below. Integrating φ′(ρ) in Eq. (4.16) and choosing the integration
constant such that φ(ρ0) = 0, we get

φ(ρ) = −(ρ − ρ0)(1 + ln κ) + 1

λ
(ν + λρ) ln(ν + λρ) − κ

λ
ln κ. (4.17)

The behavior of the function φ(ρ) is illustrated in Fig. 4.1.
As mentioned above, for κ > ν the function φ(ρ) has a minimum (equal to zero)

for ρ = ρ0. It follows that φ(0) > 0, so thatPms
1 ≈ e−Vφ(0) is exponentially small with

the volume. The assumption of a metastable active state is thus consistent, according
to Eq. (4.11). The lifetime τms of the metastable state can be estimated as the inverse
of the rate of increase of P0, leading to

τms ≈ 1

ν
eVφ(0). (4.18)

The lifetime is thus found to increase exponentially with the volume of the system,
which justifies the fact to consider the active phase as a ‘true’ phase of the system
in the large size limit. In contrast, for κ < ν, the function φ(ρ) has no minimum
for ρ > 0, but is minimum for ρ = 0. As a result, φ(0) = 0 so that Pms

1 remains
of the order of 1 even for large volume V . Hence P0 increases rapidly according to
Eq. (4.11), and the system converges to the absorbing state in a relatively short time.
The assumption of a metastable active state is thus no longer consistent in this case.
One thus recovers the absorbing phase transition occuring at κ = ν.

One of the interests of the present large deviation approach is to be able to describe
the fluctuations of the number of particles in the active phase. Expanding φ(ρ) around

Fig. 4.1 Illustration of the
large deviation function φ(ρ)

for different values of κ
(ν = λ = 1). The active
phase (κ > 1) corresponds to
the situation where the
minimum of φ(ρ) is reached
for ρ > 0

0 1 2 3
ρ
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2

3

φ
(ρ
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its maximum to second order in ρ−ρ0, we can compute the variance σ2
ρ = 〈(ρ−ρ0)

2〉
in the Gaussian approximation, yielding for the relative standard deviation

σρ

ρ0
= λ

κ − ν

√
κ

λV
. (4.19)

Hence the relative amplitude of fluctuations is inversely proportional to the square
root of the volume, as expected from the Central Limit Theorem (see Sect. 6.1.1).
One may also note from Eq. (4.19) that the relative amplitude of density fluctuations
diverges when κ − ν → 0.

To conclude on this model, it is also of interest to briefly comment on the analogies
and differences with the fluctuations of the number of particles in the equilibrium
grand canonical ensemble (see Sect. 1.3.3), in which particles are exchanged with
a reservoir. Assuming for instance that particles are randomly distributed among a
large number of boxes, the entropy reads S(ρ) = −Vρ ln ρ, where V is here the
number of boxes. Taking into account the contribution of the chemical potential μ
characterizing the particle reservoir, one finds a large deviation function

φGC(ρ) = ρ ln ρ − μρ + φ0, (4.20)

where the constant φ0 is chosen such that φ(ρ̄) = 0, ρ̄ being the average density. Note
that we have set the temperature to T = 1 as it plays no role here. In spite of some
similarities, it is thus not possible to directly map the nonequilibrium large deviation
function φ(ρ) given in Eq. (4.17) to an equilibrium one as given in Eq. (4.20), showing
again that an absorbing phase transition is a genuine nonequilibrium phenomenon.

4.2 Evolutionary Dynamics

4.2.1 Statistical Physics Modeling of Evolution in Biology

Another example of a system composed of a large but non conserved number of units
is the case of biological populations (of bacteria for instance), that evolve generation
after generation under the combined effect of selection and random mutations. This
is of course a topic of very general interest and with a broad literature, most of it
being outside physics journals. Giving even a brief summary of what has been done
in this field is clearly not possible in a few pages. The reader interested in this field
is referred to specific reviews like Ref. [3].

Our more modest goal here is to give a flavour of the important similarities and
differences between the dynamics of an assembly of physical units, and the evolution
dynamics of a biological population. On the shortest time scales we are considering
here, a biological population evolves through the birth and death of individuals.
The number of individuals is thus not conserved, similarly to the reaction-diffusion

http://dx.doi.org/10.1007/978-3-319-42340-1_6
http://dx.doi.org/10.1007/978-3-319-42340-1_1
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processes we have described in Sect. 4.1. However, the focus of studies of biological
evolution is not on the statistics of the number of individuals in the population
but rather on the statistics of the characteristics of these individuals. Contrary to the
simple particles considered in reaction-diffusion processes that carry no information,
individuals in a biological population are characterized, even in the simplest models,
by a ‘genome’ that encodes their genetic information. This genetic information has
two main roles in the models. First, it determines the fitness of an individual, that is
its relative capacity to have offsprings (‘children’) as compared to other individual in
the population. The higher its fitness, the more offsprings an individual is statistically
expected to have: this is the selection process. The fitness characterizes the degree
of adaptation of an individual to its environment. Second, the genetic information is
transmitted to the offsprings, who thus carry the same genetic information as their
ancestor, up to rare mutations (‘errors’ in copying the genetic code). Such mutations
are also essential for the long-term evolution of the population and its adaptation to
changes in the environment.

Since the primary interest is not on fluctuations of population size but on statis-
tics of genetic information, a usual trick is to use the following type of dynamics.
Considering a population of N individuals, an individual is randomly chosen with a
probability per unit time proportional to its fitness. Once chosen, it gives birth to an
offspring which replaces another individual, randomly chosen with uniform proba-
bility. With some small probability, the offspring may also be affected by a mutation.
Such types of rules hence (somehow artificially) ensure a constant population size,
making analytical treatments easier.

Forgetting about the underlying individuals in the model, one can map the above
model of birth and death onto a model of N genomes subjected to a jump dynamics:
the genome of the new-born individual simply replaces that of the dead individual.
Note that this change of genome should not be confused with mutations. Mutations
corresponds to (often small) changes in the genome of an offspring with respect to
its direct ancestor. In contrast, we are here formally replacing a genome, on the list
of genomes of the population, by the genome of another individual, without any
filiation between the two underlying individuals.

For concreteness, let us denote as σi the genome of individual i . In practice, σi

is generically an ordered list σi = (si,1, . . . , si,L) of L symbols belonging to a finite
alphabet, for instance si, j ∈ {A,U,G,C} like in DNA, or si, j ∈ {0, 1} in simplified
models. We will, however, not refer to the detailed structure of the variables σi in
the following, but simply use the assumption that σi takes a finite number of discrete
values.

Given the stochastic nature of the birth-death process described above, standard
methods of nonequilibrium statistical physics suggest to describe the dynamics of
the population with a master equation for the probability P(C, t) that the population
has a configuration C = (σ1, . . . ,σN ), characterizing the list of genomes of all
the individuals in the population. Such an approach however leads to a complicated
master equation that cannot be solved easily, and is thus not very helpful in practice.

An alternative solution is to describe the stochastic dynamics at the level of an
individual genome σ, instead of considering explicitly the full population. Yet, due
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to the presence of effective interactions between genomes generated by the fitness,
transition rates between different values of σ are not predefined, time-independent
functions. This results in a non-linear master equation instead of the standard linear
one, as explained below. A further difficulty is to be able to determine the evolution of
the probability distributionP(σ, t) under the combined effect of birth-death processes
and mutations. A standard way out of this difficulty is to assume that the mutation
rate is very low, and to take into account a separation of time scales between the
relatively fast birth-death process, and the much slower dynamics of mutations. We
thus first consider the convergence to a steady state for the dynamics in the absence of
mutations, and in a second step describe the quasistatic evolution of this steady-state
under a very low mutation rate.

4.2.2 Selection Dynamics Without Mutation

We start by considering the dynamics of a population of fixed size N under the
selection birth-death process without mutations; this model is a simple version of
the so-called Moran model. The fitness is assumed to depend only on the genome
σ, and is denoted as f (σ). The continuous time dynamics is defined as follows.
An individual with genome σ′ is randomly chosen with a probability per unit time
proportional to its fitness f (σ′). The chosen individual then gives birth to an offspring
having exactly the same genome σ′, due to the absence of mutations. This offspring
replaces another individual with genome σ, randomly chosen among the population
with uniform probability. Our goal is to write down an effective master equation for
the probability distribution P(σ, t) of genomes at time t . We first need to determine
the transition rate W (σ′|σ) from a genome σ to a genome σ′. The process is driven
by the choice of the individual with genome σ′ who gives birth to an offspring, so
that the transition rate does not depend on the genome σ of the replaced individual.
The transition rate W (σ′|σ) is simply proportional to the fitness f (σ′) and to the
number n(σ′, t) of individuals with genome σ′ at time t in the population. We thus
end up with

Wt (σ
′|σ) = f (σ′)

n(σ′, t)
N

(4.21)

where the factor 1/N has been included to normalize the time scale (a frequency unit
could be included here, but we have assumed the transition rates to be dimensionless).
Note that we have made explicit in the notation the time-dependence of the transition
rate. In this form, the transition rate Wt (σ

′|σ) is however not well-defined, due to the
fact that nt (σ′) is actually a random variable, depending on the global configuration
of the population. This problem is nevertheless solved in the infinite population size
limit N → ∞, for which Eq. (4.21) reduces to

Wt (σ
′|σ) = f (σ′)P(σ′, t) . (4.22)
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Now Wt (σ
′|σ) is no longer a random variable, but is determined in a self-consistent

way by the solution of the master equation

∂P

∂t
(σ, t) =

∑
σ′(�=σ)

[Wt (σ|σ′)P(σ′, t) − Wt (σ
′|σ)P(σ, t)], (4.23)

the price to pay being that this master equation is now non-linear. In order to find the
steady-state solution of Eq. (4.23), it is natural to first look at the simplest type of
solution, namely solutions satisfying detailed balance (see Sect. 2.1.2). In the present
case, detailed balance corresponds to the following equality (we drop the explicit time
dependence of the transition rates since we are considering a steady state solution)

W (σ|σ′)P(σ′) = W (σ′|σ)P(σ). (4.24)

Taking into account the expression (4.22) of the transition rates, Eq. (4.24) leads to
the self-consistent solution

P(σ) = 1

Z
f (σ)P(σ) (4.25)

where Z is a normalization factor. This equation implies that P(σ) is non-zero only
over the configurations σ having a common value f0 of the fitness f (σ). In the
following, we assume for simplicity that all genomes σ have distinct fitnesses f (σ).
Under this assumption, the stationary probability distribution P(σ) concentrates on
a single genome σ0,

P(σ) = δσ,σ0 . (4.26)

This phenomenon, by which the whole population acquires the same genome, is
called fixation of the genome σ0.

A dynamical view on the fixation phenomenon can be obtained by computing the
rate of change of the mean fitness

〈 f 〉 =
∑

σ

f (σ)P(σ, t). (4.27)

Starting from Eqs. (4.22) and (4.23), one has

d

dt
〈 f 〉 =

∑
σ,σ′

f (σ)[ f (σ) − f (σ′)]P(σ, t)P(σ′, t). (4.28)

Note that we have dropped the constraint σ �= σ′ in the sum, since the corresponding
term is equal to zero. Expanding the term between brackets in Eq. (4.28) directly
yields

d

dt
〈 f 〉 = 〈 f 2〉 − 〈 f 〉2. (4.29)

http://dx.doi.org/10.1007/978-3-319-42340-1_2
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Hence in the absence of mutation, the rate of change of the mean fitness in an infinite
population is equal to the variance of the fitness across the population. This important
result is known as Fisher’s theorem of natural selection. It shows in particular that the
mean fitness of the population cannot decrease, and remains constant only when the
variance of the fitness vanishes, corresponding to a population in which all individuals
have the same fitness. If all genomes have different fitnesses, a single genome is thus
selected in the long time limit, and one recovers the phenomenon of fixation described
above.

A natural question is then to know what is the probability of fixation of a given
genome σ0 starting from a heterogenous population in which many different genomes
are present. Obviously, a genome with a high fitness f (σ0) should have a higher
probability of fixation than a genome with a low fitness. Giving a quantitative answer
for an arbitrary initial condition is however a complicated problem. In the following
subsection, we will discuss a specific case in which a relatively simple answer can
be given.

4.2.3 Quasistatic Evolution Under Mutation

We have seen above that an initial population with heterogeneous genomes and
fitnesses across individuals evolves under a birth-death process with selection (but no
mutation) to a homogeneous population where all individuals have the same genome.
Under the time scale separation hypothesis mentioned above, one can assume that the
typical time between mutations is much larger than the time needed for the population
to relax to a single genome. In this framework, the effect of successful mutations
(those that reach fixation) can thus be conceived simply as jumps between different
values of the genome—while mutations that do not reach fixation can simply be
neglected. Since mutations are random, one needs to resort to a stochastic description,
involving transition rates from one value of the genome to another. We denote as Q(σ)

the distribution of the genome σ. Let us emphasize the different interpretation of the
distribution Q(σ) with respect to the distribution P(σ) introduced in Sect. 4.2.2. The
functionP(σ) describes the distribution of genomes across the population, in the limit
of a large population size where the fluctuations of this distribution can be neglected.
By contrast, the distribution Q(σ) describes a large ensemble of populations, each
population being homogeneous with a single genome σ.

In order to describe the dynamics of the distribution Q(σ), we need to determine
the probability per unit time of the fixation of a mutated genome. This probability
per unit time is the product of the mutation rate μ (the probability per unit time that
a random mutation occurs) and of the probability that the new genome eventually
reaches fixation. This probability of fixation can be evaluated as follows. Let us
consider an initially homogeneous population of genome σ1. A random mutation then
replaces one of the N genomes σ1 by a new genome σ2. For brevity, the associated
fitnesses f (σ1) and f (σ2) are denoted as f1 and f2 respectively. Under the population
dynamics, the number n of genomes σ2 in the population evolves in a stochastic
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manner. When an offspring replaces another individual, several situations may occur:
(i) the offspring has genome σ2 and replaces a genome σ1, in which case n increases
by one; (ii) the offspring has genome σ1 and replaces a genome σ2, in which case n
decreases by one; (iii) the genome of the offspring is the same as the replaced one, so
that n does not change. In case (i), the probability that the offspring has genome σ2

is proportional to f2n (each of the n genomes σ2 has a probability proportional to f2
to be chosen in order to give an offspring), while the probability that the randomly
replaced individual has genome σ1 is proportional to N − n (it is picked up in a
uniform way among the N − n genomes σ1). The probability T (n+ 1|n) to increase
n by one is then given by

T (n + 1|n) = Cn f2n(N − n) (4.30)

where Cn is a normalization constant. Similarly, in case (ii), the probability that the
offspring has genome σ1 is proportional to f1(N − n), while the probability that the
randomly replaced individual has genome σ2 is proportional to n. The probability
T (n − 1|n) that n decreases by one then reads

T (n − 1|n) = Cn f1n(N − n). (4.31)

The normalization constant Cn is determined by the condition that T (n + 1|n) +
T (n − 1|n) = 1, yielding

T (n + 1|n) = f2
f1 + f2

, T (n − 1|n) = f1
f1 + f2

. (4.32)

The problem thus boils down to a random walk for the integer n in the interval
0 ≤ n ≤ N , with transition rates given by Eq. (4.32). The walk stops when it reaches
either n = 0 or n = N . For brevity, we introduce the notations q ≡ T (n + 1|n);
hence 1 − q = T (n − 1|n). With probability one, the walk eventually reaches either
n = 0 (in which case the mutated genome σ2 disappears from the population) or
n = N (in which case the genome σ2 is fixed). The probability that the walk does not
reach any boundary after an infinite number of steps is zero. The fixation probability
is the probability for the walk to reach n = N starting from n = 1. To compute the
fixation probability, let us introduce more generally the probability Pf(m) that the
walk first reaches n = N starting from a position n = m. The fixation probability is
then simply Pf(1). The interest of introducing Pf(m) lies in the fact that this quantity
obeys a recursion relation, namely

Pf(m) = q Pf(m + 1) + (1 − q)Pf(m − 1) (4.33)

with 1 ≤ m ≤ N −1. The interpretation of this relation is very simple. Starting from
position n = m, the walk can either jump to m+1 with probability q and then have a
probability Pf(m + 1) to eventually reach n = N , or jump to m − 1 with probability
1 − q and have a probability Pf(m − 1) to reach N . Equation (4.33) can be rewritten
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as
Pf(m + 1) − Pf(m) = r [Pf(m) − Pf(m − 1)] (4.34)

with

r = 1 − q

q
= f1

f2
(4.35)

where we have taken into account the definition Eq. (4.32) of the transition rates. By
summation, Pf(m) can be obtained from Eq. (4.34) as

Pf(m) = Pf(0) + [Pf(1) − Pf(0)]
m−1∑
k=0

rk (4.36)

for m = 1, . . . , N . Computing explicitly the geometric sum, and taking into account
the boundary conditions Pf(0) = 0 and Pf(N ) = 1, one obtains

Pf(m) = 1 − rm

1 − r N
(4.37)

from which the fixation probability follows,

Pf(1) = 1 − r

1 − r N
. (4.38)

Note that although we may have in mind a beneficial mutation, that is f2 > f1,
the fixation probability (4.38) is valid whatever the values of f1 and f2. With the
above notation r = f1/ f2, one has for large N that Pf(1) ≈ (r − 1) if f2 > f1, and
Pf(1) ≈ (1 − r)/r N � 1 if f2 < f1. Hence a beneficial mutation ( f2 > f1) has a
finite probability of fixation, while a deleterious mutation ( f2 < f1) has a very small
fixation probability, that goes to zero when the population size N goes to infinity.

Considering the long time scale dynamics through which the genome of the homo-
geneous population changes under mutation and fixation of the mutated genome, the
transition rate from σ1 to σ2 reads

Wm(σ2|σ1) = μ
1 − ( f1/ f2)

1 − ( f1/ f2)N
(4.39)

with μ the mutation rate. These transition rates govern the evolution of the distribution
Q(σ, t) according to

∂Q

∂t
(σ, t) =

∑
σ′(�=σ)

[Wm(σ|σ′)Q(σ′, t) − Wm(σ′|σ)Q(σ, t)]. (4.40)

One can easily check that the transition rate (4.39) satisfies a detailed balance relation
of the form [4]
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Wm(σ2|σ1) f N−1
1 = Wm(σ1|σ2) f N−1

2 . (4.41)

As a result, the stationary probability distribution Q(σ), reached in the infinite time
limit, is proportional to f (σ)N−1,

Q(σ) = 1

Z
f (σ)N−1 (4.42)

where Z is a normalization factor. Let us emphasize that N is simply an external
parameter in this long time scale dynamics of the genome σ, since the population is
homogeneous and the definition of σ does not involve N . This is to be contrasted for
instance with the full configuration (σ1, . . . ,σN ) of an heterogeneous population,
which depends on N . Equation (4.42) suggests an interesting analogy with equilib-
rium statistical physics [4]. Defining ε(σ) = − ln f (σ), one can rewrite Eq. (4.42)
as

Q(σ) = 1

Z
e−βeff ε(σ). (4.43)

This form of the distribution Q(σ) shows a clear analogy to the equilibrium dis-
tribution in statistical physics, provided one interprets ε(σ) as an effective energy,
and βeff = N − 1 as an effective inverse temperature. Having an effective tem-
perature which depends on N may be surprising at first sight, but let us emphasize
again that N can here be considered as an external parameter, as explained above.
This property has important consequences. In the infinite size limit, the effective
temperature Teff = β−1

eff is equal to zero, and the distribution concentrates on the
lowest energy states, that is on the genomes with the highest fitness. For a finite
population size, fluctuations around these states of highest fitness are allowed, and
these fluctuations become larger when population size is decreased. By analogy with
the potential energy landscape of physical systems, it is customary to speak about
the “fitness landscape” in the context of biological evolution modeling. Note that,
strictly speaking, the fitness landscape characterizes a single genome; it is simply a
representation of the value of the fitness as a function of the genome value. However,
the notion of fitness landscape is more useful to describe a population, especially
under the simplifying assumption that the population is homogeneous and can be
described by a single genome. It is only by considering a population that a dynamics
in the fitness landscape can be defined, and we have seen that the population size N
plays a key role as being essentially the inverse effective temperature. In a complex
fitness landscape, a small population size (relatively high effective temperature) may
help to reach higher values of the fitness by escaping local maxima in the fitness
landscape thanks to fluctuations that may temporarily decrease the fitness.

As mentioned earlier, the genome σ is often described in evolution models as
a sequence of symbols, σ = (s1, . . . , sL), with in the simplest models s j ∈ {0, 1}
or s j ∈ {−1, 1}. The integer L is in general assumed to be large. In the context of
these models, there is thus a natural mapping between the fitness landscape and the
energy landscape of spin models in physics. In particular, mappings to disordered
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spin models like spin glass models have been proposed [3]. Typical examples of
fitness functions directly inspired by disordered spin models include the analogue of
the random field paramagnetic model

f (σ) =
L∑

i=1

hi si + F0, σ = (s1, . . . , sL), (4.44)

where hi is a quenched random variable, as well as the p-spin model

f (σ) =
∑

i1,i2,...,i p

Ji1,i2,...,i p si1si2 . . . si p + F0 (4.45)

where p ≥ 3 is an integer parameter of the model. The constant F0 is included
to ensure that the fitness remains positive. The parameters Ji1,i2,...,i p are (time-
independent) random coupling constants that couple the p spins (si1 , . . . , si p ). The
distribution of these coupling constants in general depends on the total number L of
spins. The sum is performed over all sets of p spins among the L spins. The random
field model (4.44) is a simple realization of a so-called ‘Fujiyama landscape’ [3], in
which there is a single maximum in the landscape, that is reached under evolution
from any initial genome. By contrast, the p-spin model yields a complicated fitness
landscape that includes many local maxima in which the population may get trapped
during evolution.

A popular alternative to the p-spin model is the so-called NK-landscape, which
associates to each of the L spinsσi a set of K (typically randomly chosen) ‘neighbors’,
with K < L . The values of these neighbor spins determine the contribution of spin
si to the total fitness, according to

f (σ) = 1

L

L∑
i=1

J̃i (si , si1 , si2 , . . . , siK ). (4.46)

The parameters J̃i (si , si1 , si2 , . . . , siK ) are quenched random variables that take sta-
tistically independent values for each configuration (si , si1 , . . . , si p ). One of the main
differences with the p-spin model is that in the NK-model, each spin si interacts with
a single set of K spins, considered as its neighbors. In contrast, in the p-spin model
a given spin si interacts with all possible sets of p − 1 other spins.

4.3 Dynamics of Networks

In this chapter, we have have up to now considered the dynamics of non-conserved
particles. More generally, interacting particles often generate a complex network of
interactions, which evolves in time. The study of dynamically evolving networks is



110 4 Beyond Assemblies of Stable Units

in itself a topic of interest, which can be interpreted as the creation, annihilation and
rewiring of links between a set of nodes, and can thus be considered as the dynam-
ics of interacting non-conserved units—the links. As an elementary introduction to
the statistics of networks, we will here mostly focus on statistical properties of sta-
tic networks. We refer the reader to more advanced reading, like Ref. [5], for an
introduction to dynamical aspects of networks.

Statistical physicists, as well as condensed matter physicists, are familiar with
the use of lattices to model crystals, or more generally many types of models of
interacting particles or agents having interaction with other particles in a well-defined
neighborhood. Typical examples include the Ising model, or the original version of
the Schelling model, which is also defined on a two-dimensional lattice. The lattice
geometry is relevant when the metric (or Euclidean) distance is the criterion deciding
which sites are linked: a link is then present only between the closest sites, in the
sense of the standard metric distance of a continuous Euclidean space.

However, this regular network geometry is not relevant in all cases, and examples
where more complex (or less regular) networks are useful abund in the complex
system literature. In the last two decades, this field has known a very intense research
activity, partly driven by the increase of computer power (both in terms of memory and
computation speed) and the somewhat related availability of large data sets coming
from the web (e.g., network of hyperlinks between websites) or other sources (airport
network with passenger traffic, data on the spreading of epidemics, etc.) [6]. For those
types of applications, regular networks like lattices are of little help, while complex
networks including some type of randomness have proven useful in the description
of these real world data. More information on this topic can be found for instance in
Refs. [5, 6].

4.3.1 Random Networks

A network (or graph) is basically defined by a set of N nodes (also called vertices,
or sites), and a list of links (or edges) between these nodes. One can define a variable
gi j which is equal to 1 when there is a link between i and j , and equal to 0 otherwise.
Links may be directed or not. A directed link means that the link is defined from i
to j . Hence the fact that i is linked to j does not imply that j is linked to i ; to do
so, a second link has to be drawn from j to i . If links are directed, the network is
called a directed graph. From the knowledge of lattices in statistical physics, we are
more familiar with undirected graphs. For undirected graphs, the matrix formed by
the coefficients gi j is symmetric by construction. For a directed graph, the matrix
gi j is not necessarily symmetric, but it may also be in some limit cases, if all links
between two sites come in pair with opposite orientations. This limit case is however
of low interest, as it boils down to having an undirected graph. So in practice, directed
graphs have asymmetric matrices gi j .
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For a random graph, one has to assign to each possible realization of a graph
with N nodes (that is, to each matrix gi j ) a given probability. The simplest type
of random network is the so-called Erdös-Rényi random network. Two variants of
this network actually exist. The original Erdös-Rényi model consists in assigning an
equal probability to all possible graphs with N nodes and M undirected links, and
a zero probability to graphs having a number of links different from M . Although
conceptually simple, this model is not the most convenient one for practical cal-
culations, and one often uses instead an alternative version of the model. In this
second variant, one builds a random graph by including a link between each pair
(i, j) of nodes independently with a probability p. Hence the number of links is
on average 〈M〉 = pN (N − 1)/2, but fluctuations around this value are allowed.
The difference between these two versions of the model is somewhat similar to the
difference between the microcanonical and canonical ensembles introduced in equi-
librium statistical physics. In this latter context, calculations are more convenient in
the canonical ensemble. Similarly, calculations of graph properties are easier in the
second version of the model with independent probabilities to have a link between
two nodes.

In the version of the Erdös-Rényi model having independent random links on
each node with probability p, the total number M of links is a random variable with
a binomial distribution

P(M) = Mmax!
M !(Mmax − M)! p

M(1 − p)Mmax−M (4.47)

where Mmax = N (N − 1)/2 is the number of pairs of nodes. The interpretation
of the binomial distribution (4.47) is simple. The probability that a link is present
on a given pair of nodes is p, and the probability to have no link is 1 − p. Hence
the probability to have M links at given positions (i.e., on given pairs of nodes)
and no links elsewhere is pM(1 − p)Mmax−M , due to statistical independence. The
combinatorial factor in Eq. (4.47) simply counts the number of possible positions
that the M links can occupy. In the large N limit, the distribution P(M) takes a large
deviation form

P(M) ≈ e−Mmax�(y) (0 < y < 1) (4.48)

with y = M/Mmax and

�(y) = y ln
y

p
+ (1 − y) ln

1 − y

1 − p
. (4.49)

The fluctuations of M on a scale
√
Mmax ∼ N are described by a Gaussian distribution

of mean value 〈M〉 = pN 2/2 and variance 〈(M − 〈M〉)2〉 = pN 2/2.
Another simple quantity of interest is the degree k of a node, defined as the number

of nodes to which a given node is connected. This degree k ranges by definition
between 0 and N − 1. The degree distribution is also binomial, like the distribution
of the total number of links, and reads
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Pd(k) = (N − 1)!
k!(N − 1 − k)! p

k(1 − p)N−1−k . (4.50)

This distribution is easily interpreted as follows. A given node can potentially be
connected to any of the N − 1 other nodes. The probability to have a degree k is
thus given by the probability pk to have k links, times the probability (1 − p)N−1−k

that there is no link to the N − 1 − k remaining nodes. The combinatorial factor
in Eq. (4.50) then simply counts the number of ways to choose the k nodes among
N − 1 to connect the links.

From Eq. (4.50), the average degree is equal to 〈k〉 = p(N − 1) (≈ pN for large
N ). Hence it diverges with the size of the graph, meaning that in a large graph, any
node is connected to a large number of other nodes. In many applications however,
one is interested in large random graphs with a fixed (relatively low) average degree.
The solution is then to choose a probability p that depends on N , namely p = z/N ,
where z is a constant. The average number of neighbors is then equal to z for large N .
In this case, the distribution (4.50) simplifies, for large N , to a Poisson distribution
[7]

Pd(k) = zk

k! e
−z (4.51)

which is independent of N . Under the assumption p = z/N , the distribution P(M)

of the total number of nodes takes for large N a large deviation form which differs
from Eq. (4.48), namely

P(M) ≈ e−N�̃(x) (4.52)

with x = M/N , and

�̃(x) = x ln
2x

z
− x + z

2
. (4.53)

The distribution (4.52) concentrates around the average value M = zN/2. Note that
the function �̃(x) is now defined over the entire positive real axis, while the function
�(y) introduced in Eq. (4.49) is restricted to the interval 0 < y < 1. Fluctuations
of M on a scale

√
N are still described by a Gaussian statistics, with a variance

〈(M − 〈M〉)2〉 = zN/2.

4.3.2 Small-World Networks

Another important class of complex networks, which plays an important role in the
modeling of real-world data, is the small-world network introduced by Watts and
Strogatz [8]. The precise definition of the Watts-Strogatz model can be found for
instance in [6]. Here, we only sketch the main idea which is common to networks
with small-world properties. It consists in associating properties of “metric networks”
(networks where only nodes closer than a given distance in the embedding Euclidean
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space are linked) with properties of random networks, like the fact that the length of
the shortest path (counted in number of links along the network) remains relatively
small even for large networks. To do so, one basically starts from a “metric network”
(e.g., a lattice) and adds to it with a small probability some random links between
arbitrary (typically distant) nodes. Instead of adding links, one may also “rewire” the
network, that is choose randomly a link (i, j) and replace it by a link (i, k), where k
has been chosen randomly among all nodes (possibly with some constraints). In this
way, the number of links is conserved, which may be of interest in some cases.

The motivation for introducing such networks notably comes from the wish to
have complex networks with a high clustering coefficient (as observed in many
real-world networks), while classical Erdös-Rényi networks have a low clustering
coefficient. The (local) clustering coefficient quantifies the tendency of the neighbors
of a given node i0 to be connected between themselves. If a node has k neighbors, these
neighbors can have at most nmax = k(k − 1)/2 undirected links between them (note
that links to the original node i0 are not counted). If the actual number of links between
the neighbors of the node i0 is n (again excluding links with i0), the local clustering
coefficient is given by c(i0) = n/nmax. An average clustering coefficient c̄ can be
defined by averaging c(i0) over the nodes i0. Regular networks like lattices have a
relatively large (meaning a finite fraction of unity) average clustering coefficient,
while the average shortest-path length is large for a large graph. In contrast, random
graphs of the Erdös-Rényi type have a low (much smaller than one) average clustering
coefficient, as well as a small average shortest-path length. Yet, many real-world
networks have both a relatively large clustering coefficient, and a small shortest-path
length, which motivated the introduction of small-world networks satisfying this
property.

As a more concrete illustration of the interest of small-world networks, let us
consider the following real-world application related to transportation networks. Let
us imagine that we try to analyze the railway network on the scale of a large country,
or of a continent. Nodes of the network are the cities in which there is a railway station,
and the links are the railways between cities. Such a network is constrained by the
two-dimensional geometry of the surface of the Earth, and is thus expected to be of
metric type: there are most often no direct railways between very distant cities. Now
imagine that one is not interested only in the railway network, but more generally on
transportation means between cities. One will thus also include in the network the
airplane lines between large cities having an airport. Including these airplane lines
thus drastically changes the properties of the network. With only railways, the length
of the shortest path along the network typically grows as the Euclidean distance (on
the surface of the Earth) between the nodes. Including the airplane lines, the ‘length’
of the shortest path (understood here as the time needed to travel along the path)
grows much more slowly with distance. This is in line with our common experience.
For instance, in our modern world, the time needed to travel 10000 km is much less
than one hundred times the duration of a 100 km trip. Note however that this was
not the case more than one century ago, when only ground transportations were
available.
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4.3.3 Preferential Attachment

We have seen in Eq. (4.51) that the degree distribution is a Poisson distribution,
which implies that its variance is equal to the average value 〈k〉. As a result, typical
fluctuations around 〈k〉 are of the order of 〈k〉1/2. It is thus very unlikely to observe a
node with a degree much larger than the average value. Yet, power-law distributions
of degrees have been reported in many real networks [6]; such networks have been
called ‘scale-free’. Even in cases where the degree distribution does not follow a
power law, it still significantly differs from the Poisson distribution in most cases.
A generic mechanism to account for this broader distribution has been proposed by
Barabási and Albert [6]. It relies on two basic ingredients. The first one is to model the
dynamics which builds the graph, instead of simply looking at the final graph. Hence
the graph is built step by step, by successively adding new nodes and connecting
each new node to one or several previous nodes according to some stochastic rules.
The second ingredient is related to a specific property of these stochastic rules,
and is called preferential attachment. The idea is that the new node tends to attach
preferentially to existing nodes that already have a high degree. A simple way to
do that is to assume that the probability to attach the new node to an existing node
i is proportional to its degree ki . The connectivity of the added node is fixed to a
given value m, meaning that m new links are randomly attached to the existing links
according to the preferential attachment rule.

Numerical simulations of this model show that the degree distribution has a power-
law tail proportional to k−3 for large k [6]. This is again in stark contrast with the
classical Erdös-Rényi random graph which has a Poisson degree distribution, which
decays faster than any power-law distribution at large k. Interestingly, this power-law
k−3 can also be predicted using relatively simple analytical arguments [6]. Let us
denote as Nk(t) the average number of nodes with k edges at time t . We assume that
time is continuous, and that on average one node is added per unit time. According
to the preferential attachment rule, the probability for each of the m links of a new
node to attach at time t to a given existing node of degree k is equal to

qk(t) = k∑
k ′ k ′Nk ′(t)

. (4.54)

Taking into account the fact that m links are attached to each new node, the average
number Nk(t) evolves according to

dNk

dt
= m(k − 1)qk−1(t) − mkqk(t) + δk,m . (4.55)

Equation (4.55) is a balance equation formally similar to a master equation, except
that the total number of nodes is not constant in time, contrary to a total probability
which is constrained to remain equal to 1. The first term in Eq. (4.55) accounts for
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the increase of Nk due to the attachment of a new link to a node of degree k − 1,
which thus becomes of degree k. The second term describes the decrease of Nk due
to the attachment of a new link to a node of degree k, which thus becomes of degree
k + 1. Finally, the last term accounts for the newly added node, which has degree m
and contributes only to Nm . At large time, the total number of nodes satisfies

∑
k

Nk(t) = t, (4.56)

and the total number of links is equal to mt . Since a link is attached to two nodes,
the average degree of the nodes is equal to 2m, so that for large time

∑
k

kNk(t) = 2mt. (4.57)

The degree distributionP(k), assumed to be time-independent in the long time regime
considered here, is given by

P(k) = Nk(t)∑
k ′ Nk ′(t)

(4.58)

so that Nk(t) = tP(k), taking into account Eq. (4.56). In this regime, Eq. (4.55) can
be rewritten as

P(k) = 1

2
(k − 1)P(k − 1) − 1

2
kP(k) + δk,m . (4.59)

At large times, all nodes have at least a degree m, since new added nodes have a
degree m, and initial nodes have been connected to added nodes and have a large
degree (one may also assume that the initial nodes all have a degree of at least m).
We thus assume that in the large time regime, Nk = 0 for k < m. Then Eq. (4.59)
reduces for k > m to the following recursion relation

P(k) = k − 1

k + 2
P(k − 1), (4.60)

while the case k = m provides the condition P(m) = 2/(m + 2). Solving this
recursion equation leads to

P(k) = 2m(m + 1)

k(k + 1)(k + 2)
(4.61)

from which the large k behavior P(k) ∼ k−3 follows.
To conclude this section, we note that an interesting mapping between the random

dynamics of networks and the dynamics of the Zero-Range Process has also been
proposed [9]. In this case, the number of nodes is fixed, and the dynamics rather
proceeds through the rewiring of links. Without entering into details, the basic idea
of this mapping is that rewiring a link is similar to moving a particle from one
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node to another, as if a particle was attached to the end of each link. Modeling
preferential attachment actually requires a generalization of the Zero Range Process,
called Misanthrope process, in which the transfer of a particle from a site to another
depends on the numbers of particles on both the departure and arrival sites. With a
preferential attachment dynamics, which favors rewiring to nodes with a high degree,
one may obtain under some conditions a condensation transition similar to the one
of the Zero Range Process (see Sect. 3.2). This condensation corresponds in the
network to the onset of a hub, that is a node to which a finite fraction of all the links
are attached.

Note that the above mapping is actually not exact, and requires some approxi-
mations. An exact, though more complicated mapping of a directed network to a
Zero-Range process with many different types of particles has also been proposed
[10].

We have considered here very basic network models, mostly undirected. Directed
graphs also play an important role. Besides, to each link of the network may also
be associated a ‘weight’, like the passenger traffic on a transportation line (train,
plane,…); such graphs are called weighted networks. In addition to static graphs (or
graph ensembles), we have briefly seen one type of dynamics which is the network
growth, as in the Albert-Barabási model. This is however just a way to build the
graph, but the final graph which is studied is also static. Studying the dynamics of
graphs rather consists in looking at graphs which evolve dynamically, for instance
due to some rewiring dynamics. Finally, recent research trends focus on the study
of dynamical processes occuring on complex networks, like the spreading of an
epidemy or of a rumor in a population (in which case the network represents the
contacts between individuals, along which a disease or a piece of information may
be transmitted). Clearly, this dynamical process may take place on a network which is
itself dynamically rearranging, giving rise to an interesting and non-trivial interplay
between both types of dynamics.
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Chapter 5
Statistical Description of Deterministic
Systems

Although we have up to now mostly focused on stochastic descriptions of non-
equilibrium systems, deterministic descriptions are also a widely used tool in complex
system modeling. In the beginning of Sect. 5.1, we have already discussed some
examples of deterministic dynamics, when describing for instance the time evolution
of mechanical systems and some preliminary aspects of the construction of statistical
physics. From Sect. 5.2 on, we have switched to a stochastic description of the systems
under consideration, as this type of description turns out to be very convenient in
a statistical physics context. In the present section, we come back to deterministic
systems to briefly introduce some basic properties of this type of dynamics (Sect. 5.1),
and to see how probabilistic tools may be of some relevance to describe chaotic
deterministic systems (Sect. 5.2). In a second stage, we discuss how the coupling of
a large number of dynamical systems having different parameter values may lead to
a non-trivial collective behavior, like the global restabilization of unstable individual
units (Sect. 5.3) or the synchronization of coupled oscillators (Sect. 5.4).

5.1 Basic Notions on Deterministic Systems

5.1.1 Fixed Points and Simple Attractors

In this first subsection, we focus on dynamical systems with continuous time dynam-
ics. The notions introduced here can be defined in a similar way for discrete time
dynamical systems. We will briefly discuss such discrete time systems in Sect. 5.1.3,
when introducing the notion of chaotic dynamics.

In a continuous time description, deterministic systems are described by an ordi-
nary differential equation

dx

dt
= F(x(t)). (5.1)
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An important notion is that of fixed point of the dynamics. If a constant x (0) is such
that F(x (0)) = 0, then x(t) = x (0) is a time-independent solution of Eq. (5.1), and
x (0) is said to be a fixed point of the dynamics. Fixed points can then be classified
into two main categories according to their linear stability properties. If a value x
slightly away from x (0) tends to converge with time to x (0), then x (0) is said to be a
linearly stable fixed point. In the opposite case, the distance between x(t) and x (0)

grows with time, and x (0) is said to be a linearly unstable fixed point. Mathematically,
one writes x(t) = x (0) + ε(t), assuming ε(t) to be small, and linearizes Eq. (5.1),
leading to

dε

dt
= F ′(x (0)) ε, (5.2)

taking into account that F(x (0)) = 0. The linear stability of the fixed point x (0) is
simply given by the sign of F ′(x (0)): the fixed point is linearly stable for F ′(x (0)) < 0,
while it is linearly unstable for F ′(x (0)) > 0. In the case where F ′(x (0)) = 0, the fixed
point is said to be marginally stable, and stability is actually determined by the first
nonzero term in the expansion of F(x (0) +ε) in powers of ε. Note also that a linearly
stable fixed point may be unstable with respect to large enough perturbations. In this
case, the fixed point is said to be nonlinearly unstable.

These basic notions can be easily generalized to the deterministic dynamics of sev-
eral coupled degrees of freedom, described by a set of ordinary differential equations
characterizing the evolution of N degrees of freedom xi (t),

dxi
dt

= Fi (x1, . . . , xN ), i = 1, . . . , N . (5.3)

The notion of fixed point and of their stability can be introduced in the same way as
above. If (x (0)

1 , . . . , x (0)
N ) are such that F(x (0)

1 , . . . , x (0)
N ) = 0, then xi (t) = x (0)

i
is a time-independent solution of Eq. (5.3) for all i = 1, . . . , N and the point
(x (0)

1 , . . . , x (0)
N ) is said to be a fixed point. The stability is studied by introducing

a small perturbation around the fixed point:

xi (t) = x (0) + εi (t) (5.4)

leading after linearization of Eq. (5.1) to

dεi

dt
=

N∑
j=1

∂Fi
∂x j

(
x (0)

1 , . . . , x (0)
N

)
ε j , i = 1, . . . , N . (5.5)

Determining the stability of the fixed point is then more involved mathematically
than in the case of a single degree of freedom. We first note that Eq. (5.5) can be
rewritten more formally in terms of the vector E = (ε1, . . . , εN )T (the superscript T

denotes the matrix transpose) and the matrix M of elements
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Mi j = ∂Fi
∂x j

(
x (0)

1 , . . . , x (0)
N

)
. (5.6)

With these notations, Eq. (5.5) then reads

d

dt
E = ME. (5.7)

The matrix M is sometimes called the stability matrix. Using the standard tools of
linear algebra, the stability of the fixed point is given by the eigenvalue λM of the
matrix M having the largest real part, denoted as Re λM . If Re λM < 0, the fixed
point is linearly stable, while if Re λM > 0 the fixed point is linearly unstable. The
case Re λM = 0 corresponds to a marginally stable fixed point, whose actual stability
is given by terms of higher order than the linear terms retained in Eq. (5.5). If the
eigenvalues are all real, the linearized dynamics simply corresponds to a sum of
exponential functions of time. If some of the eigenvalues are complex (they need
to appear as pairs of complex conjugate values), then the linearized dynamics also
includes oscillations.

A stable fixed point is actually the simplest example of the more general notion of
attractor. An attractor is, generically speaking, a subset of phase space (i.e., the space
in which the vector x1, . . . , xN is defined) onto which the dynamics concentrates at
long time. These attractors can be classified according to their dimension. A stable
fixed point is thus a zero-dimensional attractor, and a limit cycle is a one-dimensional
attractor; attractors of higher dimension can also exist. Obviously, the dimension of
the attractor cannot be larger than the dimension of phase space, that is the number
N of dynamical variables. In some situations, the long time dynamics may be very
irregular even at long times, and the dynamics is called chaotic in this case—we
shall provide later on a more accurate definition of chaotic dynamics. For dissipative
systems, chaotic dynamics leads to “strange attractors” having a fractal dimension.
We shall come back to the description of chaotic dynamics in Sect. 5.1.3, though
without describing strange attractors.

5.1.2 Bifurcations

When the dynamics of the system depends on an external control parameter, the
stability of the fixed points, as well as their locations, generically depends on this
control parameter. Most often, the location of the fixed point varies continuously
with the control parameter, so that it is possible to “follow” the evolution of the
fixed points. Moreover, a stable fixed point may become unstable when the control
parameter is varied beyond a critical value. Such a change of stability, which is often
accompanied by the onset of one or several new attractors (two stable fixed points,
or a limit cycle for instance), is called a bifurcation. Let us illustrate this notion on
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the simple example of the nonlinear dynamics of a single variable x(t), described by
an equation

dx

dt
= f (x, μ) (5.8)

where μ is the control parameter. We assume for simplicity that x = 0 is a fixed
point for all values of μ (otherwise, one simply needs to redefine x through a shift).
This implies that f (0, μ) = 0. We further assume that f is odd, meaning that
f (−x, μ) = − f (x, μ). Expanding f (x, μ) around x = 0, one generically obtains

f (x, μ) = α(μ)x − β(μ)x3 + O(x5) (5.9)

where α(μ) and β(μ) are two functions of μ, that we assume for simplicity to
be continuous. Note that even terms in x vanish due to the parity properties of f .
A bifurcation occurs when there exists a value μ0 such that α(μ) changes sign at
μ = μ0. Without loss of generality, we assume that α(μ) < 0 for μ < μ0 and
α(μ) > 0 for μ > μ0. Then, a linear stability analysis of the fixed point x = 0 leads
to

dx

dt
= α(μ)x . (5.10)

Hence x = 0 is a stable fixed point for μ < μ0, and an unstable fixed point for
μ > μ0, so that a bifurcation occurs for μ = μ0. If the coefficient β(μ) appearing
in Eq. (5.9) is strictly positive for μ ≥ μ0, a pair of symmetric fixed points appears
when μ > μ0 at x = ±x0, with

x0 =
√

α(μ)

β(μ)

(
α(μ) > 0

)
. (5.11)

It can be checked easily that these new fixed points are linearly stable. The continuity
of α(μ) for μ → μ0 implies that the fixed points ±x0 continuously emerge from
0 when μ is increased above μ0 (see Fig. 5.1 Left). Such a bifurcation is called a
supercritical bifurcation.

If on the contrary β(μ) < 0 for μ > μ0, the determination of the emerging stable
fixed points involves the term of order x5 in the expansion given in Eq. (5.9), or
more generally the lowest order stabilizing term. In this case, the new fixed points
emerge at finite values ±x∗

0 when μ exceeds a value μ∗ < μ0 (see Fig. 5.1 Right).
Such a transition is called a subcritical bifurcation. Note that there are strong formal
analogies between the simple bifurcations we have just presented, and the Landau
theory of phase transitions, as described in Sect. 1.4. Note also that in systems
with more than one degree of freedom, more complex bifurcations may occur, like
the Hopf bifurcation in which a limit cycle appears when a fixed point becomes
unstable as a controle parameter is varied. Here again, notions of supercritical and
subcritical bifurcations may be introduced depending on whether the limit cycle
emerges continuously from a point, or with a finite size respectively.

http://dx.doi.org/10.1007/978-3-319-42340-1_1
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Fig. 5.1 Sketch of two standard types of bifurcations, occuring at a value μ0 of the control parameter
μ. Lines indicate the fixed points x0 of the dynamics (full line stable fixed point; dashed line unstable
fixed point). Left supercritical bifurcation; two symmetric stable fixed points appear continuously
from x0 = 0 for μ > μ0. Right subcritical bifurcation; stable non-zero fixed points appear at a
finite distance from x0 = 0 for a value μ∗ < μ0, indicated by a vertical dotted line. Linear stability
of the fixed point x0 = 0 is lost only for μ > μ0

5.1.3 Chaotic Dynamics

To discuss the notion of chaotic dynamics, it is actually more convenient to use the
framework of discrete time dynamics. In this case, time takes only integer values and
the value xt+1 of a dynamical variable at time t + 1 is given as a function of its value
xt at time t

xt+1 = f (xt ). (5.12)

The function f (x) is called a map, as it maps the interval of definition of the variable
x onto itself. To emphasize the discreteness of time, we write it as a subindex. The
discrete time dynamics may be interpreted as a periodic sampling of an underlying
continuous time dynamics. Yet, this does not need to be the case, and a discrete time
dynamics can also be considered in its own right, independently of any continuous
time dynamics. The notion of fixed point, limit cycle and chaotic dynamics can be
similarly defined for discrete time dynamics. A fixed point x (0) is such that

x (0) = f (x (0)). (5.13)

The stability is tested by introducing a small perturbation around the fixed point,
xt = x (0) + εt , yielding

εt+1 = f ′(x (0)) εt . (5.14)

The fixed point is thus linearly stable when ε converges to zero, that is when
| f ′(x (0))| < 1. In the opposite case | f ′(x (0))| > 1, the fixed point is linearly unstable.
In the simple case of the discrete time dynamics of a single degree of freedom as we
consider here, a limit cycle consists in a finite set of q values (xc1, . . . , x

c
q) such that
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Fig. 5.2 Illustration of the
shape of the function f (x)
for λ = 5 (dot-dashed line),
λ = 10 (dashed line) and
λ = 15 (full line)
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f (xc1) = xc2, f (xc2) = xc3, . . . , f (xcq) = xc1 . (5.15)

If the dynamics does not converge in time to a fixed point or to a limit cycle, it may
be chaotic, with an apparently erratic behavior. Chaoticity is defined by the fact that
the distance between two initially close points increases exponentially with time; the
growth rate is called the Lyapunov exponent. Note that this notion is different from
the case of an unstable fixed point, since we are considering arbitrary closeby initial
points, rather than the neighborhood of a fixed point. More generally, for a system
with N degrees of freedom, there are N Lyapunov exponents. The system is chaotic
if the largest Lyapunov exponent is positive.

As a simple illustration of the emergence of chaotic dynamics, let us consider the
following map (see Fig. 5.2),

f (x) = λx

(
x − 1

2

)
(x − 1) + x (5.16)

where λ is a parameter taken in the interval 0 < λ < 16 to ensure that 0 < f (x) < 1
for 0 < x < 1 (negative values of λ would also satisfy this constraint in some range,
but we focus here on positive values of λ). Fixed points, satisfying f (x (0)) = x (0),
are readily given by x (0) = 0, 1

2 and 1. The two fixed points x (0) = 0 and x (0) = 1 are
unstable since f ′(0) = f ′(1) = 1 + λ

2 > 1. The stability of the fixed point x (0) = 1
2

is more interesting as it depends on λ. We have

f ′
(

1

2

)
= 1 − λ

4
(5.17)

so that | f ′( 1
2 )| < 1 for 0 < λ < 8 and | f ′( 1

2 )| > 1 for λ > 8. As a result, the fixed
point x (0) = 1

2 is linearly stable for λ < 8 and linearly unstable for λ > 8. In this
latter case, we can check by numerical simulations towards which kind of attractor
the dynamics converges. We see that for λ = 10, a limit cycle is obtained, while for
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Fig. 5.3 Top left Convergence to a fixed point for λ = 5. Top right Convergence to a limit cycle
(oscillation between two different points) for λ = 10. Bottom case λ = 15, showing a chaotic
behaviour (Left same time window as on the top panels; Right larger time window)

λ = 15, a chaotic dynamics is observed—see Fig. 5.3. By chaotic, we simply mean
here that the dynamics appears to be very irregular. A more quantitative statement
would require a numerical evaluation of the Lyapunov exponent.

5.2 Deterministic Versus Stochastic Dynamics

5.2.1 Qualitative Differences and Similarities

An interesting notion to discuss qualitative similarities and differences between deter-
ministic and stochastic dynamics is that of chaotic walk. Let us define a walk y(t)
through the relation

yt+1 = yt + (2xt − 1) (5.18)
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where the variable xt , obeying Eq. (5.12), has been rescaled into 2xt−1 so that it spans
the entire interval [−1, 1]. An illustration of the chaotic walk is shown on the left
panel of Fig. 5.4, and it turns out to be visually similar to a random walk, at least at first
sight. Looking more carefully, one may however notice some anticorrelation between
the steps, in the sense that positive steps are more often followed by negative steps
than by positive ones. To make the comparison more quantitative, one can compute
the mean displacement 〈xt 〉 and the mean square displacement 〈x2

t 〉—see right panel
of Fig. 5.4. The average is taken over an ensemble of trajectories with different initial
conditions, so that averages depend on time. More precisely, the initial position is
given by y0 = 0, and the initial value x0 is uniformly sampled from the interval
(0, 1), taking a set of equidistant values over this interval. We observe that the mean
displacement is almost equal to zero up to some small fluctuations, while the mean
square displacement turns out to be linear in time, again up to some small fluctuations.
These results coincide with the results obtained from a random walk, showing that
random systems and chaotic systems share some common properties. In a sense,
this is not very surprising since in practice, random processes are simulated on a
computer using random number generators that are nothing but chaotic deterministic
processes. However, let us stress that random number generators need to be tuned to
satisfy required properties of statistical independence and uniformity of the generated
numbers. We see here that taking an arbitrary map to compute a chaotic walk, we
already obtain without any fine tuning some basic properties that are similar to that of
random systems. In the following section, we discuss in more details this similarity
between chaotic and random systems.
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Fig. 5.4 Left Chaotic walk (full line); a random walk (dashed line) is shown for comparison.
Right Mean displacement 〈xt 〉 and mean square displacement 〈x2

t 〉 of the chaotic walk, obtained
by averaging over many trajectories having different initial conditions. Similarly to what would be
obtained for a random walk, the average displacement is zero for all time, and the mean square
displacement increases linearly with time
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5.2.2 Stochastic Coarse-Grained Description of a Chaotic
Map

We now come back to the chaotic map xt+1 = f (xt ) considered in Sect. 5.1.3. We
have previously determined average values of a few observables in the chaotic regime
of this map. Here we wish to go one step further and to determine the full histogram
of the values of xt . This histogram is displayed on Fig. 5.5 (left panel), for a value
λ = 15 corresponding to a chaotic regime.

The histogram has been built following standard methods, namely dividing the
interval (0, 1) into a relatively large number of subintervals, called ‘bins’, and deter-
mining for a long trajectory the relative number of values of xt that are contained
in each bin. An important remark at this stage is that the dynamics of the map is
purely deterministic only if the value of xt is known with an infinite accuracy. To
illustrate this issue, we may use the bins not only to build the histogram, but also to
define an effective dynamics using coarse-grained configurations. In terms of these
new configurations, the dynamics is no longer deterministic, because the evolution
starting from a given bin at time t may lead to several distinct bins at time t + 1,
while deterministic dynamics would require a single target bin. Stated otherwise,
the knowledge of the initial coarse-grained configuration is not enough to determine
the configuration at any later time. Interestingly, this property is also a characteristic
property of stochastic systems, and we will now elaborate more quantitatively on
this comparison.

To this aim, we define an auxiliary stochastic model as follows. Having defined
a partition of the interval (0, 1) into bins, we start by measuring the frequency of
occurrence F( j → k) of direct (i.e., in a single step) transitions from bin j to bin k
for any pair ( j, k). In a second stage, we define the auxiliary stochastic model as a
Markov chain on the set of bins, with transition probabilities T ( j → k) chosen to be
equal to the frequencies F( j → k) measured in the chaotic dynamics. Simulating
this Markov chain, we can also determine the corresponding empirical histogram
of x(t). The result is shown on the right panel of Fig. 5.5. A striking similarity
is observed with the original histogram obtained from the chaotic dynamics. This
similarity indicates that in practical situations, in which data necessarily have a finite
resolution, it may be difficult to distinguish a deterministic process from a stochastic
one.

These difficulties may actually be overcome by using more sophisticated tools
to characterize the nature of the dynamics. For instance, under the assumption of a
deterministic dynamics, one may try to characterize the dimension of the attractor. If
this procedure is applied to a stochastic signal, the resulting dimension of the attractor
would be found to be very large (in principle infinite). Yet, this type of analysis is, like
the more naive ones previously discussed, limited in practice by the finite amount of
available data (typically a finite set of points). To take this hard fact into account, an
interesting proposition has been put forward, namely to characterize the deterministic
or stochastic nature of a signal relatively to a given scale of resolution [1].
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Fig. 5.5 Left Histogram of the values of xt , using the deterministic evolution xt+1 = f (xt ), in
the case λ = 15. Right Histogram obtained from the effective stochastic process mimicking the
deterministic one (see text). Both histograms turn out to be very similar

5.2.3 Statistical Description of Chaotic Systems

To go beyond the numerical analysis presented above, let us discuss the statistical
approach to chaotic systems from a more theoretical perspective. Although chaotic
systems are deterministic, they can be described by tools that are similar to that used
for stochastic systems, namely probability distributions. In the case of deterministic
systems, probabilistic aspects do not come from the evolution in itself, but rather from
the fact that one follows an ensemble of trajectories, determined by a set of initial
conditions. Hence one follows the evolution of a distribution pt (x) of configurations
x as a function of time t , under the deterministic dynamics. We consider here the case
of a deterministic dynamics defined by a map xt+1 = f (xt ), and we assume without
loss of generality that the variable x is defined over the interval (0, 1) (any other
interval, even unbounded, can be mapped onto the interval (0, 1) through some—
possibly nonlinear—transform). Formally, the evolution of the distribution pt (x) is
given by the equation

pt+1(x) =
∫ 1

0
dx ′ pt (x ′) δ

(
f (x ′) − x

)
. (5.19)

Note that the distribution pt (x) is normalized according to
∫ 1

0 p(x) dx = 1. Now
one has to identify, for each value of x , the list of values x ′

i , i = 1, . . . , n(x) such
that f (x ′

i ) = x . Then, thanks to the standard properties of Dirac delta functions (see
Appendix A), one can rewrite

δ
(
f (x ′) − x

) =
n(x)∑
i=1

1

| f ′(x ′
i )|

δ(x ′ − x ′
i ) (5.20)
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so that Eq. (5.19) now reads, after integration of the Delta distributions,

pt+1(x) =
n(x)∑
i=1

pt (x ′
i )

| f ′(x ′
i )|

. (5.21)

The stationary distribution is then obtained by assuming that pt (x) does not depend
on t , yielding the following equation for the stationary distribution p(x),

p(x) =
n(x)∑
i=1

p(x ′
i )

| f ′(x ′
i )|

. (5.22)

This equation is in general complicated to solve, because it is non local (recall that
x ′
i is a function of x). In most cases, n(x) is piecewise constant, which slightly

simplifies the problem, although finding the solution on each interval where n is
constant remains potentially difficult.

As a simple illustration, let us consider the following map, sometimes called
(generalized) tent map:

f (x) =
⎧⎨
⎩

x
a if 0 ≤ x ≤ a,

1−x
1−a if a ≤ x ≤ 1.

(5.23)

This map is illustrated in the left panel of Fig. 5.6. In this case, the equation f (x ′
i ) = x

has two solutions for all x (hence n(x) = 2). These solutions are given by

x ′
1 = ax, x ′

2 = 1 − (1 − a)x (5.24)
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Fig. 5.6 Left Illustration of the shape of the tent map for a = 0.3 (full line) and a = 0.8 (dashed
line). Right Stationary probability distribution measured numerically for the tent map given in
Eq. (5.23), confirming the prediction of a uniform distribution (full line a = 0.3; dashed line
a = 0.8). Both distributions are indistinguishible
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and one has | f ′(x ′
1)| = a and | f ′(x ′

2)| = 1 − a, so that Eq. (5.22) reads

p(x) = a p(ax) + (1 − a) p
(
1 − (1 − a)x

)
. (5.25)

A constant value of p(x) is obviously a solution of this equation, and this constant
has to be p(x) = 1 from the normalization condition

∫ 1
0 p(x) dx = 1. Note that the

same uniform distribution is obtained whatever the value of a. Whether Eq. (5.25)
admits other solutions is not easy to verify, but one can resort to numerical simulations
to check whether this uniform distribution is the one asymptotically reached by the
dynamics. Note that such a comparison requires the hypothesis of ergodicity, whereby
ensemble averages are assumed to be equal to time averages. Under this assumption,
we show on the right panel of Fig. 5.6 that the histogram computed from numerical
simulations agrees with the predicted uniform distribution p(x) = 1, meaning either
that the solution is unique, or that at least it is the dynamically selected solution.

The example has been chosen here to yield a simple enough analytic solution. Of
course, and although the distribution is found here not to depend on the parameter
a, not all maps yield a uniform stationary distribution. We have seen for instance in
Fig. 5.5 that the map f (x) given in Eq. (5.16) gives a nonuniform distribution.

5.3 Globally Coupled Dynamical Systems

5.3.1 Coupling Low-Dimensional Dynamical Systems

Up to now, we have discussed some basic properties of dynamical systems, focusing
on low dimensional systems, that is, systems with a small number of degrees of
freedom. An interesting generalization, much in the spirit of statistical physics, is to
couple a large number of dynamical systems, each of them possibly having its own
characteristics, as defined by some individual control parameter for instance. The
coupled system is then a high dimensional dynamical system, that may exhibit a rich
behavior. In the following, we restrict ourselves to large, globally coupled dynamical
systems, in which a given individual dynamical system interacts with all the others
in the same way. In principle, such a large system can also be studied purely in the
framework of dynamical systems, by determining for instance the attractors in the
high-dimensional phase space. However, such a task is in general very complicated.
Also, in the spirit of statistical physics, one may wish to reduce the description of
the system to a small number of global variables (or “order parameters”), based on
the knowledge of the individual dynamical systems. A general procedure, involving
some approximation scheme, has been developed to obtain such a reduced description
in terms of a small number of average variables [2]. We will illustrate this procedure
on the following globally coupled model, composed of N dynamical systems with
two variables x j (t) and y j (t), for j = 1, . . . , N . The variables x j (t) and y j (t) obey
the deterministic dynamics given by
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dx j

dt
= τ j g(x j , y j ) + k(X − x j ) (5.26)

dy j
dt

= τ j h(x j , y j ) + k(Y − y j ) (5.27)

where X (t) = N−1 ∑N
j=1 x j (t) and Y (t) = N−1 ∑N

j=1 y j (t) are respectively the
instantaneous average values of x j (t) and y j (t) over the population of dynamical
systems. The functions g(x, y) and h(x, y) are at this stage arbitrary given functions,
that do not depend on j . Heterogeneity is incorporated in the model by introducing a
specific time scale τ j > 0 for each dynamical system j . The last terms in Eqs. (5.26)
and (5.27) are global coupling terms, that constrain x j and y j to remain close to the
population averages X and Y . The constant k is called the coupling constant.

In order to illustrate the usefulness of the order parameter expansion method,
we will investigate how the coupling between dynamical systems may change the
stability of the fixed point with respect to the uncoupled case k = 0 (or in other
words, of the individual dynamics). To this aim, we assume that (x, y) = (0, 0) is an
unstable fixed point of the uncoupled system (k = 0). This implies in particular that
g(0, 0) = h(0, 0) = 0, and that at least one of the two eigenvalues λ1 and λ2 of the
stability matrix (see Sect. 5.1.1) has a positive real part. Then, for any value of the
coupling k, the configuration (x j , y j ) = (0, 0), j = 1, . . . , N (implying X = Y = 0)
is also a fixed point of the dynamics. The question we wish to address now is whether
this fixed point of the global system remains unstable when the coupling constant is
increased.

5.3.2 Description in Terms of Global Order Parameters

A generic approximation method to obtain a closed set of equations for a reduced
number of global order parameters is the following. One starts by expanding
Eqs. (5.26) and (5.27) perturbatively into the deviations of the variables x j , y j and τ j

with respect to their population average values. Note that we assume that the coupling
constant k is strong enough so that the global system is in a coherent regime where
each individual system remains close to the population average value. We introduce
the notations

x j = X + δx j , y j = Y + δy j , τ j = τ + δτ j (5.28)

where τ = N−1 ∑N
j=1 τ j . Hence one has by definition

∑N
j=1 δx j = ∑N

j=1 δy j =∑N
j=1 δτ j = 0. By appropriately rescaling the functions g and h, we can set τ =

1, without affecting the existence and the stability of the fixed point (0, 0) of the
individual dynamical systems. The order parameters consist in the population average
parameters X and Y , and possibly a small number of other parameters that remain to
be defined if needed. Expanding Eq. (5.26), one gets
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dX

dt
+ d

dt
δx j = g(X,Y ) + g(X,Y ) δτ j + ∂g

∂x
(X,Y ) δx j + ∂g

∂y
(X,Y ) δy j

+ ∂g

∂x
(X,Y ) δτ jδx j + ∂g

∂y
(X,Y ) δτ jδy j − kδx j (5.29)

where we have kept only linear terms with respect to δx j and δy j . A similar equation
is obtained by expanding Eq. (5.27), simply exchanging δx j and δy j , and replacing
g by h. Let us denote by a j the population average of any quantity a j , namely
a j ≡ N−1 ∑N

j=1 a j . Taking the population average of Eq. (5.29), we see that linear
terms in δτ j , δx j and δy j cancel. Taking also into account the analogous equation
for Y , we are thus left with the equations

dX

dt
= g(X,Y ) + ∂g

∂x
(X,Y ) V + ∂g

∂y
(X,Y )W (5.30)

dY

dt
= h(X,Y ) + ∂h

∂x
(X,Y ) V + ∂h

∂y
(X,Y )W (5.31)

where we have introduced the new order parameters

V = δτ jδx j , W = δτ jδy j . (5.32)

To close the set of equations (5.30) and (5.31), one needs to find evolution equations
for the new global variables V and W . The equation for V is obtained by multiplying
Eq. (5.29) by δτ j and averaging over the population. Applying a similar procedure
to obtain an equation for W , we eventually get

dV

dt
= σ 2g(X,Y ) + ∂g

∂x
(X,Y ) V + ∂g

∂y
(X,Y )W − kV (5.33)

dW

dt
= σ 2h(X,Y ) + ∂h

∂x
(X,Y ) V + ∂h

∂y
(X,Y )W − kW (5.34)

where σ 2 = δτ 2
j . Hence we have obtained a closed set of four equations for the four

order parameters X , Y , V and W . Note that to close the equations, we have neglected
terms proportional to δτ 2

j δx j or δτ 2
j δy j .

5.3.3 Stability of the Fixed Point of the Global System

Having obtained Eqs. (5.30), (5.31), (5.33) and (5.34), we can now proceed to the
stability analysis of the global fixed point (X,Y, V,W ) = (0, 0, 0, 0), corresponding
to a situation in which all individual dynamical systems are at the point (x j , y j ) =
(0, 0). We thus linearize the set of Eqs. (5.30), (5.31), (5.33) and (5.34), yielding a
matrix equation
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d

dt
Z = MZ (5.35)

where we have introduced the vector Z = (X,Y, V,W )T , and M is the stability
matrix. To lighten notations, we define

g1 = ∂g

∂x
(0, 0), g2 = ∂g

∂y
(0, 0), h1 = ∂h

∂x
(0, 0), h2 = ∂h

∂y
(0, 0). (5.36)

The stability matrix M is then given by

M =

⎛
⎜⎜⎝

g1 g2 g1 g2

h1 h2 h1 h2

σ 2g1 σ 2g2 g1 − k g2

σ 2h1 σ 2h2 h1 h2 − k

⎞
⎟⎟⎠ . (5.37)

One needs to compute the eigenvalues of the matrix M in order to determine the
stability of the global system. Interestingly, one sees that M has a natural block
structure in terms of the 2 × 2 matrix M2 which describes the linear stability of the
individual, uncoupled dynamical system (x, y), namely

M2 =
(
g1 g2

h1 h2

)
. (5.38)

Using this block matrix, M reads

M =
(

M2 M2

σ 2M2 M2 − kI2

)
, (5.39)

with I2 the two-dimensional identity matrix. Diagonalizing M2, there exists a matrix
P2 such that

P−1
2 M2P2 = D2 ≡

(
ν1 0
0 ν2

)
(5.40)

where the eigenvalues ν1 and ν2 are the two solutions of the equation

ν2 − (g1 + h2)ν + g1h2 − h1g2 = 0. (5.41)

Note that in what follows, we actually do not need to determine the matrix P2

explicitly. Let us introduce the 4 × 4 matrix Q defined in terms of blocks as

Q =
(
P2 0
0 P2

)
. (5.42)
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Its inverse matrix Q−1 is simply given by

Q−1 =
(
P−1

2 0
0 P−1

2

)
. (5.43)

Now we can compute the matrix M̃ = Q−1MQ, which reads

M̃ =
(

D2 D2

σ 2D2 D2 − kI2

)
, (5.44)

or more explicitly

M̃ =

⎛
⎜⎜⎝

ν1 0 ν1 0
0 ν2 0 ν2

σ 2ν1 0 ν1 − k 0
0 σ 2ν2 0 ν2 − k

⎞
⎟⎟⎠ . (5.45)

Since M̃ andM are related by a similarity transform, they share the same eigenvalues.
The eigenvalues λ of M̃ are determined by solving the equation det(M̃ − λI) = 0,
with I the 4 × 4 identity matrix. After some straightforward algebra, one finds

det(M̃−λI) = [(ν1 −λ)(ν1 −k−λ)−σ 2ν1] [(ν2 −λ)(ν2 −k−λ)−σ 2ν2]. (5.46)

Hence the eigenvalues are solutions of one of the following equations, for i = 1 or
2,

(νi − λ)(νi − k − λ) − σ 2νi = 0, (5.47)

yielding the four eigenvalues

λi,± = νi − k

2
±

√
k2

4
+ σ 2ν2

i , i = 1, 2. (5.48)

Note that the quantity under the square root may be a complex number. We are inter-
ested in checking whether the presence of the coupling between individual dynamical
systems may restabilize the fixed point X = Y = 0, which is assumed to be unstable
in individual systems. The stability criterion for the global system is that the four
eigenvalues λi,± have a negative real part. It turns out that this happens when the
eigenvalues νi are complex (and thus necessarily complex conjugate) [2], so that we
set ν1,2 = β ± iγ (β, γ real), with β > 0 due to the assumed instability of the fixed
point for individual uncoupled systems. The stability criterion Re λi,± < 0 can be
reexpressed as ∣∣∣∣∣Re

√
k2

4
+ σ 2(β + iγ )2

∣∣∣∣∣ <
k

2
− β. (5.49)
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One can immediately check that if γ = 0, condition (5.49) cannot be fulfilled, so
that complex eigenvalues ν1,2 are indeed required. It also appears clearly that hetero-
geneity is needed too: if all the dynamical systems share the same time constant τ j ,
one has σ = 0 and condition (5.49) cannot hold. Assuming γ 
 β, and performing
asymptotic expansions of Eq. (5.49) for both k � γ and k 
 γ , one finds that the
fixed point (X,Y, V,W ) = (0, 0, 0, 0) is stable in the range of coupling values

2β(1 + σ) < k < (γ 2 − β2)
σ 2

β
. (5.50)

Hence a sufficiently strong coupling (together with the presence of heterogeneity) is
able to restabilize the unstable fixed point present in individual uncoupled systems.
However, it turns out that for very large values of the coupling, the global fixed point
is again unstable. This restabilization effect has been observed in different types of
dynamical systems where the dynamics converges to a limit cycle after getting away
from the unstable fixed point. The phenomenon of restabilization of the fixed point
when increasing the coupling has been called “oscillator death” in this context [2].

5.4 Synchronization Transition

We now turn to another phenomenon emerging from the global coupling of low
dimensional deterministic systems, namely the synchronization transition, through
which coupled oscillators with distinct natural frequencies oscillate in phase, with
a common frequency, if the coupling is strong enough. The paradigmatic model for
the synchronization transition is the Kuramoto model, that we describe below.

5.4.1 The Kuramoto Model of Coupled Oscillators

The Kuramoto model [3] consists in a set of N oscillators of phase θ j , evolving
according to the coupled equations

dθ j

dt
= ω j +

N∑
k=1

K jk sin(θk − θ j ), j = 1, . . . , N , (5.51)

where ω j is the natural frequency of oscillator j , and K jk is the coupling constant
between oscillators j and k. Applications of the Kuramoto model range from chem-
ical oscillators to neural networks, laser arrays or Josephson junctions [4]. We shall
here mostly follow the presentation of this model given in Ref. [4], and refer the
reader to this specialized review for further details.
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The most simple version of the Kuramoto model is obtained by choosing uniform
(mean-field type) couplings K jk = K /N, such that any pair of oscillators has the
same coupling. The 1/N scaling is included so that the sum of all coupling terms
does not trivially dominate the natural frequency in Eq. (5.51). The evolution of θ j

is then given by

dθ j

dt
= ω j + K

N

N∑
k=1

sin(θk − θ j ), j = 1, . . . , N . (5.52)

In order to characterize the possible synchronization of the oscillators resulting from
the coupling terms, it is convenient to introduce the complex order parameter r eiψ

defined as

r eiψ = 1

N

N∑
k=1

eiθk . (5.53)

In the absence of synchronization, the (mean) value of this order parameter is equal
to zero, while the presence of synchronization is indicated by a value r > 0, the
phase ψ corresponding to the ‘average’ phase of the oscillators. It is convenient to
reformulate Eq. (5.52) as

dθ j

dt
= ω j + Kr sin(ψ − θ j ), j = 1, . . . , N , (5.54)

using the fact that from Eq. (5.53),

r ei(ψ−θ j ) = 1

N

N∑
k=1

ei(θk−θ j ) (5.55)

for any j , and taking the imaginary part of Eq. (5.55).
We shall now focus on the limit of a very large number of coupled oscillators,

N → ∞. In this case, the natural frequencies are described by the density g(ω), which
means that the fraction of oscillators having a natural frequency ω j in the infinitesimal
range [ω,ω + dω] is g(ω)dω. The density g(ω) is normalized as

∫ ∞
−∞ g(ω)dω = 1.

By an appropriate transform θ → θ − �t , it is possible to redefine the model in
such a way that 〈ω〉 ≡ ∫ ∞

−∞ ωg(ω)dω = 0. This can be interpreted as looking at
the oscillators in a rotating frame. In this frame, synchronization appears as a time
independent value of the average phase ψ , with r > 0.

The statistics of the phases of oscillators having a given frequency ω is encoded
into the time-dependent probability distribution ρ(θ |ω, t). This distribution, normal-
ized according to

∫ ∞
−∞ ρ(θ |ω, t)dθ = 1, describes the statistics of a set of identical

oscillators having different initial conditions. Taking into account Eq. (5.54), the
evolution of the distribution ρ(θ |ω, t) is governed by the equation1

1This equation may be thought of as a Fokker-Planck equation (see Sect. 2.3) in the zero noise limit.

http://dx.doi.org/10.1007/978-3-319-42340-1_2
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∂ρ

∂t
(θ |ω, t) + ∂

∂θ

[(
ω + Kr sin(ψ − θ)

)
ρ(θ |ω, t)

]
= 0. (5.56)

In the infinite N limit considered here, the expression (5.53) of the order parameter
reduces to

r eiψ = 〈eiθ 〉 ≡
∫ π

−π

dθ

∫ ∞

−∞
dω eiθρ(θ |ω, t)g(ω). (5.57)

In the following, we look for steady-state solutions and study whether the oscillators
get synchronized or not in this regime, depending on the coupling strength K .

5.4.2 Synchronized Steady State

In order to find the steady-state solution of the model, we need to find for all frequency
ω the time-independent distribution ρ(θ |ω) solution of Eq. (5.56), in which r and
ψ are time-independent values self-consistently determined from Eq. (5.57). It can
easily be checked that the uniform distribution ρ(θ |ω) = (2π)−1, which leads to r =
0, is a solution of Eq. (5.56) for all coupling strength K . This solution corresponds
to a complete lack of synchronization between oscillators. While such a situation is
likely to be relevant at low coupling, it is however possible that other solutions exist
if the coupling strength K is strong enough.

To look for such possible solutions, we start from a given value of the order
parameter reiψ with r > 0, determine the solution of Eq. (5.56) for these values of r
and ψ , and then check whether a self-consistent solution of Eq. (5.57) can be found.
We first note that if a stationary solution with global phase ψ exists, then another
steady-state solution of phase ψ + α can be obtained by shifting all the phases θ j

by the same amount α. Hence we can restrict our study to the case ψ = 0, the other
cases being deduced by a simple phase shift.

Under this assumption, the steady-state solution of Eq. (5.56) satisfies

(
ω − Kr sin θ

)
ρ(θ |ω) = C (5.58)

where C is a constant. The condition ρ(θ |ω) ≥ 0 implies that such a solution exists
only if |ω| ≥ Kr . The case |ω| = Kr is further excluded as it would lead to a
non-normalizable distribution ρ(θ |ω). As a result, one finds

ρ(θ |ω) = 1

2π

√
ω2 − (Kr)2

|ω − Kr sin θ | , |ω| > Kr. (5.59)

If |ω| ≤ Kr , the distribution (5.59) is no longer valid. We leave aside the discussion
of the marginal case |ω| = Kr , which plays no role in the following, and focus on the
situation |ω| < Kr . In this case, the evolution equation (5.54) has two fixed points,
solutions of
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ω − Kr sin θ = 0. (5.60)

To check the linear stability of a fixed point θ0, we set θ = θ0 + ε, with ε � 1.
Expanding Eq. (5.54) to linear order in ε, we get

dε

dt
= −(Kr cos θ0) ε, (5.61)

so that the fixed point θ0 is stable if cos θ0 > 0 and unstable if cos θ0 < 0. Taking
into account Eq. (5.60), the stable fixed point is thus given by

θ0 = sin−1
( ω

Kr

)
. (5.62)

The distribution ρ(θ |ω) associated to this fixed point solution is a Dirac delta function
(see Appendix A), that is an infinitely peaked solution around the fixed point:

ρ(θ |ω) = δ
(
θ − sin−1(ω/Kr)

)
, |ω| < Kr. (5.63)

Now that we have determined ρ(θ |ω) for both |ω| < Kr and |ω| > Kr , we can
self-consistently determine r from Eq. (5.57), setting ψ = 0:

r =
∫ π

−π

dθ

∫ Kr

−Kr
dω eiθ δ

(
θ − sin−1(ω/Kr)

)
g(ω)

+
√

ω2 − (Kr)2

2π

∫ π

−π

dθ

∫
|ω|>Kr

dω
eiθ g(ω)

|ω − Kr sin θ | . (5.64)

Let us now further assume that g(ω) is an even function, that is g(−ω) = g(ω) for
all ω (which is consistent with the assumption 〈ω〉 = 0). Using the symmetries of
the sine function, it can be shown that the second integral in Eq. (5.64) is equal to
zero. The first integral can be computed thanks to the properties of the δ function,
namely ∫ b

a
dx f (x) δ(x − x0) = f (x0) (5.65)

for any function f , provided that a < x0 < b. One thus finds, exchanging the order
of integration between θ and ω:

r =
∫ Kr

−Kr
dω g(ω) ei sin−1(ω/Kr). (5.66)

Using the parity of g(ω), the imaginary part of the integral vanishes, and Eq. (5.66)
reduces to

r = 2
∫ Kr

0
dω g(ω) cos

(
sin−1(ω/Kr)

)
. (5.67)
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Performing the change of variable ω = Kr sin x , one eventually finds the following
self-consistent equation, taking into account the assumption r > 0

∫ π/2

0
dx (cos x)2 g(Kr sin x) = 1

2K
. (5.68)

The solutions of this equation depend on some generic properties of the function
g(ω). In the following, we assume that g(ω) has its maximum at ω = 0, that is
for all ω �= 0, g(ω) < g(0). Denoting as I (r) the integral on the left-hand-side of
Eq. (5.68), we have for all r > 0, I (r) < I (0). Hence if the coupling constant K is
such that (2K )−1 > I (0), Eq. (5.68) has no solution for r , while a solution r > 0
exists for (2K )−1 < I (0). This defines the critical coupling Kc = [2I (0)]−1, above
which a solution r > 0 exists. Expanding g(ω) for small ω as

g(ω) = g(0) − 1

2
|g′′(0)|ω2 + O(ω4), (5.69)

with g′′(0) < 0, one finds after some algebra the following relation, for 0 < K −
Kc � Kc,

r ≈
√

16(K − Kc)

πK 4
c |g′′(0)| . (5.70)

The above result is valid for any regular function g(ω) having its maximum at ω = 0.
In the specific case

g(ω) = 1

π

ω0

ω2
0 + ω2

, (5.71)

where ω0 > 0 is a constant, the solution of Eq. (5.68) can be given explicitly for all
r , namely:

r =
√

1 − 2ω0

K
. (5.72)

Finally, it can be shown that the synchronized solution r > 0 corresponds to the
stable state of the system for K > Kc [4].
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Chapter 6
A Probabilistic Viewpoint on Fluctuations
and Rare Events

Statistical physics obviously bears some strong connection with probability theory.
Indeed, the very basis of statistical physics is to associate a probability to eachmicro-
scopic configuration of a system. When dealing with dynamics, the mathematical
theory of stochastic Markov processes also plays a central role, as we have seen in
Sect. 2.1. In this chapter, we wish to introduce some further aspects of probability
theory which are of relevance to statistical physics, namely the properties of the sum
and of the extreme values of a set of random variables.

6.1 Global Fluctuations as a Random Sum Problem

A generic problem of interest in statistical physics is to determine the statistics of
fluctuating global observables, like the total energy, magnetization or number of
particles, which are obtained as the sum of a large number of individual contribu-
tions associated to small regions of the system. Probabilistic theorems describing the
behavior of random sums are thus of great importance in statistical physics.

6.1.1 Law of Large Numbers and Central Limit Theorem

We start by discussing two cornerstones of the probabilistic theory of random sums,
namely the Law of Large Numbers and the Central Limit Theorem. Both of them
deal with the statistical properties of sums of random variables. Roughly speaking,
the Law of Large Numbers describes the fact that the empiral average of a series
of random variables converges to the theoretical average (the expectation, in proba-
bilistic terms). On the other side, the Central Limit Theorem characterizes the tiny
fluctuations of the empirical average around the expectation.
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To formulate these two theorems, we consider a set of independent and identically
distributed random variables (x1, . . . , xN ), drawn from a common distribution p(x),
and we define the sum SN = ∑N

j=1 xj.
Law of Large Numbers. Let us define the rescaled sum sN = SN/N , which is nothing
but the empirical average of the set of variables (x1, . . . , xN ). The probability dis-
tribution of s is denoted as �N (s). Under the assumption that the distribution p(x)
has a finite average value m = ∫

x p(x) dx, the Law of Large Numbers states that the
distribution �N (s) converges to a Dirac distribution,

�N (s) → δ(s − m), N → ∞ (6.1)

(see Ref. [1] for a mathematically more rigorous formulation). In other words, the
random variable sN converges to the non-random value m when N → ∞.

The Law of Large Numbers has important applications in statistical physics. The
fact that global observables like the total energy or total magnetization in a large
system composed of many degrees of freedom has only tiny fluctuations precisely
comes from the Law of Large Numbers. In addition, the fact that the probability
of an event can be measured as the empirical frequency of appearance of the event
over a large number of independent realizations is also a consequence of the Law of
Large Numbers. As a example, let us briefly discuss how the cumulative distribution
function F(x0) = ∫ x0

−∞ p(x) dx of a random variable x can be evaluated in this way.
One starts by introducing an auxiliary variable y = θ(x0−x), where x0 is an arbitrary
constant, and θ is the Heaviside function, equal to 1 for a positive argument and to
0 otherwise. Applying the Law of Large Numbers to the variable y, one finds that
the empirical average sN = N−1 ∑N

j=1 θ(x0 − xj) converges to 〈θ(x0 − x)〉 = F(x0)
when N → ∞. Since this result is valid for any x0, sN is thus an estimator of the
cumulative probability distribution F(x0).
Central Limit Theorem. Knowing that the empirical average sN converges to its
expectationm, one can wonder about the amplitude and the shape of the fluctuations
of sN around m. Assuming that the distribution p(x) has a finite second moment
〈x2〉 = ∫

x2 p(x) dx, one easily finds that the variance of sN is equal to σ2/N , where
σ2 is the variance of x (note that a finite second moment also implies a finite first
moment). Fluctuations of sN around m are thus of the order of 1/

√
N .

To characterize the shape of these fluctuations (or equivalently, of the fluctuations
of SN = ∑N

j=1 xj around its expectation Nm), we introduce the rescaled variable

zN = sN − m

1/
√
N

= SN − Nm√
N

, (6.2)

which by definition has a variance equal to σ2. The Central Limit Theorem states that
the distribution�N (z) of the variable zN converges to a centeredGaussian distribution
of variance σ2,

�N (z) → 1√
2πσ2

e−z2/2σ2
, N → ∞. (6.3)
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Let us emphasize that both the Law of LargeNumbers and theCentral Limit Theorem
rely on the assumptions that the variables are independent, identically distributed, and
have a finite first moment, as well as a finite secondmoment in the case of the Central
Limit Theorem. When at least one of these assumptions breaks down, the theorems
are no longer valid. In practice, the convergence results given in Eqs. (6.1) and (6.3)
remain valid when the random variables xi’s are not too strongly correlated, and have
distributions that do not strongly differ one from the other. In the case of strongly
correlated variables, and/or strongly non-identically distributed random variables,
the limit distributions may differ from that given in Eqs. (6.1) and (6.3). A scaling
different fromEq. (6.2)may also be needed in some cases to obtain a convergence to a
well-defined limit distribution. This is also truewhen the assumption of finite variance
is broken: as soon as σ2 is infinite, the limit distribution becomes non-Gaussian, and
a scaling different fromEq. (6.2) is needed to reach a limit distribution. This situation
is described by the Generalized Central Limit Theorem, that we now present.

6.1.2 Generalization to Variables with Infinite Variances

Aswe have just mentioned, a generalization of the Central Limit Theorem is required
when the variables considered have an infinite variance. Before stating the Gener-
alized Central Limit Theorem, let us first provide typical examples of probability
distributions having infinite variances. Such laws typically have (at least approxi-
mately) a power-law tail, and for the sake of simplicity, we briefly discuss here only
the case of a pure power-law distribution

p(x) = α xα
0

x1+α
, x ≥ x0 (α > 0) (6.4)

with p(x) = 0 for x < x0 (a lower bound is necessary to make the distribution
normalizable). A distribution like Eq. (6.4) is sometimes called a Pareto distribution.
The second moment of the distribution reads

〈x2〉 =
∫ ∞

x0

x2 p(x) dx =
∫ ∞

x0

α xα
0

xα−1
dx (6.5)

which converges on condition that α > 2. If α ≤ 2, the second moment 〈x2〉 is
infinite. As a result, the Central Limit Theorem only applies to sets of independent
and identically distributed random variables (x1, . . . , xN ) distributed according to
Eq. (6.4) if α > 2. For α ≤ 2 a generalization of the theorem is needed.

Before presenting the Generalized Central Limit Theorem, we first need to
introduce the Lévy distribution L(z;α,β), which is defined for 0 < α ≤ 2 and
−1 ≤ β ≤ 1 through its characteristic function (that is, the Fourier transform of the
probability density)
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Fig. 6.1 Illustration of the Lévy distributionL(z; α,β) for different values ofα andβ.Left α = 0.5,
and β = 0 (dashed line), 0.5 (full line) and 1 (dot-dashed). The inset shows the positive tails of these
distributions, which behave as 1/x1+α (the dotted line indicates a slope −1.5). Right α = 1.5, and
β = 0 (dashed line), 0.5 (full line) and 1 (dot-dashed). Inset positive tails of the same distributions
(dotted line slope −2.5)

L̂(k;α,β) ≡
∫ ∞

−∞
L(z;α,β) eikzdz

= exp
[

− |k|α
(
1 − iβ sgn(k)ϕ(k,α)

)]
(6.6)

with

ϕ(k,α) =
⎧⎨
⎩

tan πα
2 if α 
= 1,

2
π
ln |k| if α = 1.

(6.7)

The Lévy distribution L(z;α,β) is illustrated in Fig. 6.1, for β ≥ 0. Distributions
with β < 0 are the symmetric of the ones for β > 0 with respect to the Y -axis, since
L(z;α,−β) = L(−z;α,β). In practice, the Lévy distribution L(z;α,β) is obtained
by inverting the Fourier transform (6.6), leading to

L(z;α,β) = 1

π

∫ ∞

0
dk e−kα

cos(βkαϕ(k,α) − kz). (6.8)

The integral in Eq. (6.8) then has to be evaluated numerically.
We now provide the formulation of the Generalized Central Limit Theorem.

We denote again as (x1, . . . , xN ) a set of N independent and identically distrib-
uted random variables drawn from a distribution p(x) having an infinite second
moment

∫ ∞
−∞ x2p(x) dx. The cumulative distribution function is defined as F(x) ≡∫ x

−∞ p(x′) dx′. We define for a given set of constants {aN } and {bN } the rescaled sum
of the variables xi,
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zN = 1

bN

⎛
⎝ N∑

j=1

xj − aN

⎞
⎠ . (6.9)

The Generalized Central Limit Theorem [1, 2] states that for a suitable choice of
the rescaling parameters aN and bN , the distribution �N (z) of the rescaled sum zN
converges to the Lévy distribution L(z;α,β) if the following conditions are satisfied

lim
x→∞

F(−x)

1 − F(x)
= 1 − β

1 + β
(6.10)

∀r > 0, lim
x→∞

1 − F(x) + F(−x)

1 − F(rx) + F(−rx)
= rα. (6.11)

Let us now briefly comment on this Generalized Central Limit Theorem. First, it is
worth noticing that the parameter α in the Lévy distribution L(z;α,β) has the same
interpretation as in the example of the Pareto distribution discussed in Eq. (6.4): it
characterizes the power-law decay of the tail of the distribution. In fact, both the
Lévy distribution and the distribution p(x) from which the summed variables are
drawn decay at large x as a power law with exponent 1 + α. The parameter β, on
the other side, characterizes the asymmetry of the Lévy distribution. A value β = 0
corresponds to a symmetric distribution L(−z;α, 0) = L(z;α, 0), while for β > 0
(resp. β < 0) the positive (resp. negative) tail carries a higher probability weight
than the opposite tail.

The parameters α and β of the limit distribution can be determined from the
original distribution p(x), according to Eqs. (6.10) and (6.11). In practice, simpler
criteria can however be used—see below. Let us first notice that the distribution p(x)
actually has two tails, one in +∞ and one in −∞. The parameter α is related to the
tail with the slowest decay. Let us assume that p(x) behaves as

p(x) ∼ c1
x1+α1

, x → +∞, (6.12)

p(x) ∼ c2
|x|1+α2

, x → −∞, (6.13)

with 0 < α1,α2 ≤ 2. Then the parameter α is given by α = min(α1,α2). The
parameter β is related to the relative weight of the two tails of p(x). If α1 < α2, the
positive tail is dominant and β = 1. This is also what happens if one sums positive
variables, that is, if p(x) = 0 for x < 0. More generally, this is the case when
p(−x)/p(x) → 0 when x → +∞. Conversely, if the negative tail is dominant (α2 >

α1, and more generally p(−x)/p(x) → 0 when x → −∞), one finds β = −1. In
cases where both tails have comparable weights, that is, α1 = α2 so that p(−x)/p(x)
goes to a finite value when x → ∞, the parameter β satisfies −1 < β < 1, and is
given by

β = c1 − c2
c1 + c2

(6.14)
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where c1 and c2 are the prefactors of the power-law decays of the tails, as given in
Eqs. (6.12) and (6.13).

The choice of the parameters aN and bN also depends on α. When α > 1, the
mean value 〈x〉 is finite, so that aN is simply equal to N〈x〉 (with possibly an additive
constant). When α ≤ 1, 〈x〉 is infinite, so that there is no point in characterizing the
fluctuations around the mean. One then takes aN = 0 (or again, possibly a constant
non-zero value) for α < 1 (the case α = 1 involves logarithmic corrections). The
Generalized Central Limit Theorem may then more naturally be interpreted, for
α ≤ 1, as a generalization of the Law of Large Numbers. On the other side, the
coefficient bN formally takes a similar expression, namely bN ∝ N1/α, for all values
of α (0 < α < 2). The limit case α = 2 corresponds to the standard rescaling used
in the Central Limit Theorem. Note that for α = 2, the Lévy distribution given in
Eq. (6.8) identifies with the Gaussian distribution for all values of β.

6.1.3 Case of Non-identically Distributed Variables

In the previous subsection, we focused on the simplest case of independent and
identically distributed random variables. As we already emphasized, this is a strong
assumption whose validity can be questioned in many applications. Going beyond
this assumption requires to consider either correlated variables (strictly speaking,
dependent variables), or non-identically distributed variables. Of course, in a general
situation, the random variables would be both correlated and non-identically distrib-
uted. We start by considering the case of independent, but non-identically distributed
randomvariables. By definition, the probability distribution of such randomvariables
factorizes into a product of non-identical functions of the individual variables (called
the marginal distributions):

PN (x1, ..., xN ) =
N∏
j=1

pj(xj). (6.15)

Such a factorization property makes the analytical treatment easier, so that some of
the results obtained for independent and identically distributed random variables can
tentatively be generalized in the present framework. In particular, a generalized form
of the Central Limit Theorem exists, if the following condition, called the Lindeberg
condition [1], is satisfied. Consider a set (x1, . . . , xN ) of N independent random
variableswith probability distribution pj(x), j = 1, . . . ,N , with finite first and second
moments. We denote as mj ≡ 〈xj〉 the first moment of xj, and as σ2

j ≡ 〈x2j 〉 − m2
j its

variance. We further introduce the rescaling parameters

aN =
N∑
j=1

mj, bN =
⎛
⎝ N∑

j=1

σ2
j

⎞
⎠

1
2

, (6.16)
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as well as the rescaled sum

zN = 1

bN

⎛
⎝ N∑

j=1

xj − aN

⎞
⎠ , (6.17)

which has a distribution �N (z). Note that by definition of the rescaling parameters
aN and bN , the variable zN has zero mean and unit variance. The distribution �N (z)
converges to aGaussian distribution if and only if the Lindeberg condition is satisfied,
namely

lim
N→∞

1

b2N

N∑
j=1

∫
|v|>εbN

dv v2pj
(
v + 〈xj〉

) = 0 (6.18)

for all ε > 0. Intuitively, the Lindeberg condition means that the individual terms
in the sum become infinitesimal with respect to the sum in the limit of an infinite
number of terms. It is clear that the Lindeberg condition holds for independent and
identically distributed random variables, in which case the condition simply reads

lim
N→∞

1

b21

∫
|v|>εbN

dv v2p (v + 〈x〉) = 0, (6.19)

using bN = b1
√
N (a condition valid only for independent and identically distributed

variables). The fact that bN → ∞ ensures that condition (6.19) is satisfied. Coming
back to the general case of non-identically distributed variables, it is worth noticing
that the Lindeberg condition implies that the variance bN of the sum diverges when
the number of terms goes to infinity. This can be checked be showing that if bN
is bounded, the Lindeberg condition cannot be satisfied. As bN is by definition an
increasing function of N , assuming that it is bounded implies that bN goes to a finite
limit when N → ∞. As a result, all the integrals that are summed in Eq. (6.18)
become independent of N (although they generically depend on j) in the large N
limit. All these integrals are non-negative by definition. For small enough ε, the
integral corresponding to j = 1 is strictly positive, so that the sum in Eq. (6.18) has
to be larger than a strictly positive bound. Since the prefactor 1/b2N converges, by
assumption, to a finite limit, the limit in Eq. (6.18) cannot be equal to zero.

In cases where the Lindeberg condition does not hold, �N (z) converges to a non-
Gaussian limit distribution, which depends on the specific problem at hand. As an
explicit example of non-Gaussian distribution appearing in this context, one can
mention the following simple 1/f -noise model [3]. In this model, one considers
a random time signal h(t) that is discretized into a sequence of values hk , k =
0, . . . ,N − 1. Note that we consider t as a time for the sake of simplicity, but t could
alternatively be interpreted as a space coordinate in a one-dimensional system. The
discretized signal hk can be analyzed through a discrete Fourier tranform, defining
the complex Fourier amplitude
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cn = 1√
N

N−1∑
�=0

h� e
−2iπfn� (6.20)

associated with the frequency fn = n/N , n = 0, . . . ,N − 1. As a simplification,
the present 1/f -noise model assumes that the Fourier coefficients cn are statistically
independent random variables, with real and imaginary parts distributed according
to Gaussian distributions of variance σ2

n = κ/n for n > 0 (hence the name 1/f -
noise, since the frequency is proportional to n). Introducing the average value h =
N−1 ∑N−1

�=0 h�, the fluctuations of the signal are characterized by its empirical variance
(or “roughness”)

EN =
N−1∑
�=0

(h� − h)2, (6.21)

which is also a random variable. Using Parseval’s theorem, the empirical variance
may be rewritten as

EN =
N−1∑
n=1

|cn|2. (6.22)

In this way, EN also appears as the total energy (or integrated spectrum) of the signal.
Note that the Fourier coefficient c0, which is proportional to the average value of the
signal, plays no role here and thus does not appear in Eq. (6.22), since we focus on
fluctuations around the mean value. At this stage, we see that EN turns out to be a
sum of independent, but non-identically distributed variables un ≡ |cn|2. One can
show, from the Gaussian distributions of the real and imaginary parts of cn, that the
distribution of un is exponential,

p̃n(un) = nκ e−nκun . (6.23)

It follows that the variance of un is given by κ2/n2, according to which the variance
Var(EN ) = ∑N−1

n=1 Var(un) goes to a finite limit when N → ∞. As a result, the Lin-
deberg condition does not hold, showing that the limit distribution is non-Gaussian.

In order to determine the limit distribution in the large N limit, we rescale the
energy into ε = (EN − 〈EN 〉)/σ, where σ2 is the infinite N limit of the variance of
EN , that is σ2 = ∑∞

n=1 κ2/n2. The distribution of εN is denoted as �N (ε). In order
to determine �N (ε), it is convenient to define the characteristic function

χN (ω) =
∫ ∞

−∞
dε�N (ε)e−iωε. (6.24)

Since the variables un are independent, the characteristic function of the sum is simply
the product of the characteristic functions of the variables un, n = 1, . . . ,N − 1.
Taking the limit N → ∞, the characteristic function χN (ω) converges to a limit
function χ∞(ω), which reads [3, 4]
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χ∞(ω) =
∞∏
n=1

(
1 + iω

nσκ

)−1

exp

(
iω

nσκ

)
. (6.25)

The expression can be put into a more manageable form using the relation

�(1 + z) = e−γEz
∞∏
n=1

ez/n

1 + z
n

, (6.26)

with γE = 0.577 . . . the Euler constant, and where z is an arbitrary complex number
satisfying z 
= −1,−2, . . . [5]. The Euler Gamma function� appearing in Eq. (6.26)
is defined as �(x) = ∫ ∞

0 dt tx−1e−t . The inverse Fourier transform of χ∞(ω) can be
computed explicitly, yielding a Gumbel distribution

�∞(ε) = exp[−(bε + γE) − e−(bε+γE )], b = π√
6
. (6.27)

This is a rather surprising result as the Gumbel distribution is known to appear
usually in the context of extreme value statistics, as described below. The fact that it
also appears in the present model which bears no obvious relation to extreme value
statistics can actually be understood in a simple way [4, 6], which we however do
not detail here.

One of themain interests of the present 1/f -noisemodel is to illustrate the fact that
correlated random variables (the original signal hk) can in some cases be converted,
through a Fourier transform, into a sequence of independent, but non-identically dis-
tributed variables (the amplitudes cn), which allows for a simpler analytical treatment.
Of course, the assumption that the Fourier amplitudes are statistically independent
random variables is an approximation with respect to realistic systems, but it already
captures the onset of a non-Gaussian limit distribution for the total energy, which
is a result of interest. In more general cases however, a problem of sum of corre-
lated random variables cannot be so easily converted into a problem of independent
random variables, and one has to deal directly with the correlated case.

6.1.4 Case of Correlated Variables

Determining the limit distribution of the sum of a sequence of correlated variables
may be a difficult task. There exist, however, results for specific classes of corre-
lated random variables, like martingale differences [1], or functionals of stationary
Gaussian sequences [7, 8]. On a less rigorous basis, arguments have also been pro-
posed in the physics literature to generalize the Central Limit Theorem to some
classes of correlated random variables, for instance by considering “deformed prod-
ucts” [9] or related notions based on the non-extensive entropy formalism [10].
Results based on a class of random variables with a joint probability expressed as
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a product of matrix functions (instead of real functions in the case of independent
random variables) have also been proposed recently [11].

From a heuristic point of view, the emergence of non-Gaussian distributions in
strongly correlated variables can be understood as follows. Let us consider a large
system in which microscopic degrees of freedom are correlated over a typical length
ξ, smaller than the system size L. One can then virtually decompose the system into
boxes of linear size of the order of ξ, so that correlations between different boxes
are weak. In many cases, the global variable of interest can be decomposed as a sum
of contributions from each box. Then, the global observable can be approximated
as a sum of N = (L/ξ)D independent random variables, where N is the number of
boxes (and D is the space dimension). Assuming that the local observable in each
box has a finite variance, the distribution of the sum tends to a Gaussian distribution
when the number of boxes N goes to infinity. This is the case for instance if the
correlation length ξ is fixed and the system size L goes to infinity. Yet, it happens
in some physical systems that the correlation length is proportional to the system
size L, so that ξ/L takes a finite value when L → ∞ (this is the case for instance
in generalizations of the 1/f -noise problem [4]). In this situation, the number of
independent boxes remains finite, and the Central Limit Theorem does not hold, so
that the limit distribution of the sum is not Gaussian.

Beyond this type of heuristic arguments, some rigorous results exist in particular
for Gaussian sequences of random variables. Such sequences are defined by the
following joint probability distribution

PN (x1, . . . , xN ) =
√
detR

(2π)N/2
exp

⎛
⎝−1

2

N∑
i,j=1

xiR
−1
ij xj

⎞
⎠ (6.28)

whereR is a positive-definite matrix of determinant detR, andR−1
ij are the elements of

the inverse matrix R−1. Note that for simplicity, we focus here on the case of centered
variables, for which 〈xi〉 = 0. Generalization to non-centered variables is however
straightforward. If there exists a function r(m) such that the matrix elements of R
satisfy Rij = r(|i − j|), the Gaussian sequence is said to be stationary. In this case,
the marginal distribution of xi is a centered Gaussian distribution of variance r(0),
while the two-point correlation 〈xixi+m〉 is equal to r(m).

If a large Gaussian stationary sequences (x1, . . . , xN ) is characterized by a corre-
lation function r(m) with a power-law decay at large distance, r(m) ∼ m−α (α > 0),
then the distribution of the sum SN = ∑N

i=1 xi converges (as usual, up to a rescaling
zN = (SN − aN )/bN ) to a Gaussian distribution for all values of α > 0 [7, 8]. Hence
for Gaussian sequences, even very strong correlations do not prevent the distribution
of the sum from converging to a Gaussian limit. For stationary sequences of non-
Gaussian correlated variables, a Gaussian distribution of the sum is obtained at least
when the sum

∑n
m=1 r(m) converges for n → ∞ [12].
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Deviations from the Gaussian limit distribution may be obtained by consider-
ing non-Gaussian sequences of random variables, with strong enough correlations.
Generic results exist for variables obtained as nonlinear transforms yi = ψ(xi) of
the Gaussian variables xi [7, 8]. These results rely on the expansion of the function
ψ(x) onto the basis of Hermite polynomials. The detailed presentation of this result
goes beyond the scope of the present book. However, a simple application of the
theorem can be provided. In the case where yi = x2i − 1 [13], the theorem states that
the limit distribution of the rescaled sum zN is Gaussian as long as α > 1/2, while it
is non-Gaussian when α < 1/2. The corresponding non-Gaussian limit distribution
is known through its cumulant expansion.

6.1.5 Coarse-Graining Procedures and Law of Large
Numbers

As mentioned above, the Law of Large Numbers and the Central Limit Theorem
have many applications in statistical physics. We have seen for instance in Sect. 2.1.3
direct applications of the Central Limit Theorem in the context of random walks.
Standard random walks are described by the standard Central Limit Theorem, while
random walks with broad distributions of jump size (i.e., with infinite variance) are
described by theGeneralizedCentral Limit Theorem.Accordingly, the distribution of
the position of the randomwalk is Gaussian in the first case, and is a Lévy distribution
in the second case.

Here, we would like to briefly address the role of the Law of Large Numbers in
the derivation of large scale equations describing continuous fields like the density
field. Let us consider a model similar to the Zero Range Process, though we do not
explicitly specify the dynamics. The model is defined on a one-dimensional lattice
with L sites, and describes identical particles hoping between different sites. The
number of particles on site i = 1, . . . ,L is denoted as ni. In order to coarse-grain
the model, we further split the lattice into boxes containing a number � of sites,
such that 1 � � � L. A given box is labelled by an almost continuous variable
x = i0/L, where i0 is the site at the center of the box. The width of the boxes is equal
to �x = 1/L. We then define a coarse-grained density field as

ρ(x) = 1

�x

∑
i∈B(x)

ni. (6.29)

Turning to dynamics, the model is defined in such a way that particles can be
exchanged from any site within a given box to any site within neighboring boxes.
Given a time interval [t, t + �t], we introduce the number φi,j(t,�t) of particles
transferred between i and j (with i and j belonging to different boxes) in this interval,

http://dx.doi.org/10.1007/978-3-319-42340-1_2
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counted positively from i to j and negatively from j to i (i < j). Coarse-graining this
particle transfer at the level of boxes leads one to introduce the quantity

Q(x, t,�t) =
∑

i∈B(x), j∈B(x+�x)

φi,j(t,�t). (6.30)

The balance of particle transfers then reads

ρ(x, t + �t) − ρ(x, t) = 1

�x

[
Q(x − �x, t,�t) − Q(x, t,�t)

]
. (6.31)

We now assume that the randomvariables ni corresponding to different sites (whether
in the same box or not) are statistically independent, with the same distribution—this
property is true for instance in the Zero Range Process, assuming it is in contact with
a reservoir of particles. We further assume that the statistical independence property
is still valid when the system is close to a stationary state. As a result, the Law of
LargeNumbers can be applied, in the large box size limit, to the density of particles in
each box since it is defined as a sum of a large number of independent and identically
distributed variables. Hence it follows that the random variable ρ(x) can be identified
with its ensemble average value ρ(x).

In the same way, and under a similar assumption of statistical independence, the
coarse-grained transfer of particles Q(x, t,�t) can be identified with its ensemble
average value Q(x, t,�t). This allows for further simplifications, since Q(x, t,�t)
is, for sufficiently small �t, proportional to �t:

Q(x, t,�t) = J(x, t)�t. (6.32)

Expanding Eq. (6.31) to first order in �t and �x, we eventually get

∂ρ

∂t
(x, t) = −∂J

∂x
(x, t) (6.33)

which is the general form of the continuity equation for the density field, in one
dimension—see also Eq. (349) for the two-dimensional version in the case of self-
propelled particles. The above reasoning illustrates how the Law of Large Num-
bers can be of key importance in order to justify coarse-graining procedures into
continuous fields obeying deterministic equations like Eq. (6.33). To conclude this
discussion, two remarks are in order. First, the above model was build in an ad hoc
way, to fulfill all requirements in order to safely apply the Law of Large Numbers.
One generally faces several difficulties when trying to coarse-grain more generic
models: the random variables may not be independent and identically distributed,
and the flux of particles between boxes may not be a sum of many contributions, but
rather a small number of local terms through the box boundaries. In this case, more
sophisticated methods need to be used to perform the coarse-graining.
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Second, it is worth noticing that one can go beyond the Law of Large Numbers
and try to describe the tiny fluctuations of the coarse-grained fields using the Central
Limit Theorem. This is done in practice by adding a Gaussian noise term to the
flux J [14]. The density field then remains a stochastic variable, but it is possible to
decompose it into an average value plus some fluctuations whose evolution can be
characterized through the continuity equation.

6.2 Rare and Extreme Events

6.2.1 Different Types of Rare Events

In full generality, rare events are simply events with a low probability (one sometimes
says “in the tail of the probability distribution”). Yet, to deserve interest, what is often
called a rare event is implicitly an event that, on top of occuring unfrequently, may
also have a significant impact on the evolution of the system, if the event is relative
to some observable defined on a given system.

Beyond these very generic characterizations, the notion of rare event may actu-
ally refer to several types of events. A first type of rare event is that associated to
the crossing of a threshold or an energy barrier for instance, like in chemical reac-
tion pathways or during a local rearrangement of a dense amorphous material. If
the threshold or barrier is high, the typical time to overcome it is very large, and
the crossing event thus has a very low probability. Yet, this crossing is key to the
dynamics, and allows the systems to explore different regions of phase space, thereby
allowing the chemical reaction betweenmolecules to occur, or the material to deform
and to relax its stress. Hence this is typically a situation in which a rare event has a
noticeable impact on the dynamics of the system.

A second type of rare event corresponds to extreme values, that is to maximum or
minimum values in a set of random variables or in practice empirical data, and the
related notion of records. These important notions are respectively the subjects of the
next two Sects. 6.2.2 and 6.2.3. Moreover, a third type of rare event may be identified
as the effect of extreme events on a sum of broadly distributed random variables,
as we have seen in Chap.2 in the case of anomalous diffusion, and in the present
chapter when discussing the Generalized Central Limit Theorem in Sect. 6.1.2.

Finally, a last type of rare event corresponds to extremely rare events, that cannot
be observed in practice unless a control parameter of the system is tuned to make
them become typical. This situation is one of the basic motivations to introduce the
notion of large deviation function, that characterizes events that have a probability
which decreases exponentially with system size (typically its volume). This is the
topic of Sect. 6.3.

http://dx.doi.org/10.1007/978-3-319-42340-1_2
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6.2.2 Extreme Value Statistics

In this section, we provide some standard results on the statistics of extreme values,
namely the maximum or minimum value in a set of random variables. For simplicity,
it is convenient to restrict the study to the case of maximum values, as the case of
minimum values can be mapped onto the one of maximum values through a change
of sign. Let us consider a sequence (x1, . . . , xN ) of independent and identically
distributed random variables, with probability distribution p(x), called the parent
distribution. It is useful to also introduce the cumulative distribution, defined as

F(x) =
∫ x

−∞
p(x′) dx′ (6.34)

which is the probability that the random variable is smaller than a value x. For a
given sequence of variables (x1, . . . , xN ), one can define the maximum value in the
set,

yN = max(x1, . . . , xN ). (6.35)

We denote as Fmax
N (y) the probability that the maximum yN is smaller than a given

value y. By definition of the maximum, xi ≤ yN for all i. Hence Fmax
N (y) is equal to

the probability that all the variables xi are smaller than y. Since we are considering
independent and identically distributed random variables, Fmax

N (y) can simply be
written as

Fmax
N (y) = F(y)N . (6.36)

In the same spirit as one may look for the limit distribution of the rescaled sum in the
context of the Central Limit Theorem, one is interested here in the limit distribution
of the rescaled maximum of the set (x1, . . . , xN ). Introducing a sequence of rescaling
parameters aN and bN , we first define the rescaled maximum as

zN = yN − aN
bN

. (6.37)

The question is then to knowwhether, for a suitable choice of aN and bN , the cumula-
tive distributionHN (z) of the rescaled maximum zN converges to a limit distribution.

Standard results of extreme value statistics [15, 16] lead to the following state-
ment. Depending on the distribution p(x) of the variables xi, the limit cumulative
distribution, limN→∞ HN (z), can take three different forms:

• Hf(z) = exp
(−z−μ

)
for z > 0 and 0 for z ≤ 0 (Fréchet distribution);

• Hw(z) = exp (−(−z)μ) for z < 0 and 1 for z ≥ 0 (Weibull distribution);
• Hg(z) = exp

(−e−z
)
(Fisher-Tippett-Gumbel or Gumbel distribution).

In these distributions,μ is a positive parameter, related to the parent distribution p(x).
The probability densities pf(z), pw(z) and pg(z) are obtained from the cumulative



6.2 Rare and Extreme Events 155

-4 0 4 8
z

0

0.2

0.4

0.6

0.8
p(
z)

Gumbel
Fréchet
Weibull

-4 0 4 8
z

10
-3

10
-2

10
-1

10
0

p(
z)

Fig. 6.2 Left Illustration of the Gumbel (full line), Fréchet (dashed line) and Weibull (dot-dashed)
probability densities. Both the Fréchet and Weibull distributions have a parameter μ = 2. Right
Same data on semi-logarithmic scale

distributions Hf(z), Hw(z) and Hg(z) by taking the derivative. As an example, the
Gumbel probability density is given by

pg(z) = exp
(−z − e−z

)
. (6.38)

An illustration of the Fréchet, Weibull and Gumbel distributions is provided in
Fig. 6.2. Note that the cumulative distributions Hf(z), Hw(z) and Hg(z) can also
be formulated in a compact way using a single expression

Hγ(z
′) = exp

(−(1 + γz′)−1/γ
)
, 1 + γz′ > 0 (6.39)

where z′ = az+ b, a and b being some constant parameters which depend on γ. The
case γ > 0 corresponds to the Fréchet distribution, with the relation μ = 1/γ. The
case γ < 0 instead corresponds to the Weibull distribution, for which μ = −1/γ.
Finally, the case γ = 0, to be interpreted as the limit γ → 0 in Eq. (6.39), corresponds
to the Gumbel distribution.

The different distributionsHf(z),Hw(z) andHg(z) are selected according to some
asymptotic large x properties of the parent distribution p(x). If p(x) decays as a power
law p(x) ∼ 1/x1+μ when x → ∞ (μ > 0), the limit distribution is the Fréchet one
with the same exponent μ as the one characterizing the parent distribution p(x). If
rather the variable x is bounded by a constant A in the sense that p(x) = 0 for x > A,
and p(x) behaves as a power law close to x = A, namely p(x) ∼ (A−x)μ−1 with μ >

0, the limit distribution is the Weibull one. Finally, in the case where the distribution
p(x) decays faster than any power law, either for x going to infinity or for x going to a
finite bound A, the limit distribution is the Gumbel one. It is customary to say that the
distribution p(x) belongs either to the Fréchet, Weibull or Gumbel class according
to the limit distribution of the maximum. A typical example of a distribution p(x)
belonging to the Gumbel class is the exponential distribution p(x) = λ exp(−λx).
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Let us illustrate in this simple case how the limit distribution can be derived. The
corresponding cumulative probability distribution is F(x) = 1−exp(−λx) for x > 0
and F(x) = 0 for x ≤ 0. Then the cumulative probability distribution Fmax

N (y) of the
maximum is given (for y > 0) by

Fmax
N (y) = F(y)N = (

1 − e−λy
)N

. (6.40)

The goal is to find rescaling parameters aN and bN such that the distribution of the
rescaled maximum zN = (yN − aN )/bN converges to a limit distribution, in this
case the Gumbel distribution. Considering Eq. (6.40), one finds by inspection that a
correct rescaling is obtained by choosing aN = (lnN)/λ and bN = 1/λ. Inverting the
definition of zN to get yN = aN + bNz, we have the following convergence property:

Fmax
N (aN + bNz) =

(
1 − e−z

N

)N

→ exp
(−e−z

)
(6.41)

when N → ∞. The derivation of the Gumbel limit distribution starting from an
arbitrary cumulative distribution F(x) is more complicated, but the spirit of the
derivation remains the same.

6.2.3 Statistics of Records

A notion closely related to that of extreme value is that of record. A record in a
sequence of random variables (x1, x2, . . . , xi, . . . ) occurs at the nth step when the
value xn is larger than all previous values xi, i = 1, . . . , n − 1 (for simplicity, we
focus here on upper records; lower records are obtained symmetrically as minimal
values). Of course, the record value xn is also the maximum value of the set of
variables (x1, . . . , xn), but the questions asked in extreme value statistics and in
record statistics are slightly different. In extreme value statistics, one considers a fixed
number N of variables, (x1, . . . , xN ), and asks about the statistics of the maximum
value yN = max(x1, . . . , xN ) in the set; the limit N → ∞ is eventually taken. Note
that the order of the variables in the set (x1, . . . , xN ) plays no role. In record statistics,
one rather looks at the occurence of successive records, so that the order of variables
in a given sample matters, and the sequence does not have a fixed length, but is
rather considered to be infinite from the outset. One thus defines the kth record in a
recursive way. The first variable x1 defines the first record r1. Then one looks at the
next variables (x2, x3, . . . ) in the sequence for the occurrence of the second record
r2, that is, the first variable xj (j > 1) such that xj > r1. This occurs for a value j = n2,
and we have r2 = xn2 . In the same way, one defines recursively the record rk = xnk ,
which is the first variable in the sequence exceeding the previous record rk−1.

There are typically two types of quantities that can be investigated in the frame-
work of record statistics: first, the statistics of the “time” nk at which the kth record
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occurs; second, the statistics of the records rk themselves. In the latter case, one
may be interested in looking for the limit distribution of the variable rk in the limit
k → ∞, up to a suitable rescaling as done in the case of extreme value statistics.

Wewill consider here only themost basic statistical properties of nk . Interestingly,
for independent and identically distributed random variables xi, these properties do
not depend on the probability distribution p(x), but are universal [15, 17]. Let us
start by considering the probability Pn that the nth variable in the sequence, xn, is a
record. This probability reads

Pn =
∫ ∞

−∞
p(xn)F(xn)

n−1dxn (6.42)

where F(x) = ∫ x
−∞ p(x) dx is the cumulative distribution of x. Eq. (6.42) is simply

obtained by averaging over xn the probability F(xn)n−1 that the n− 1 other variables
x1, . . . , xn−1 are smaller than xn. Noting that

d

dxn
F(xn)

n = np(xn)F(xn)
n−1 (6.43)

we easily obtain that Pn = 1
n , independently of the distribution p(x). An immediate

consequence is that the average number Nn of records occuring up to “time” n is
given by

Nn =
n∑

k=1

Pk =
n∑

k=1

1

k
(6.44)

which in the large n limit behaves logarithmically to leading order,

Nn ≈ ln n + γE (6.45)

where γE ≈ 0.577 is the Euler constant.
In contrast, the asymptotic limit distribution of the records rk depends on the

distribution p(x) of the variables in the sequence, but only through classes of limit
distributions, similarly to the case of extreme value statistics. One can here again
split the distributions p(x) into three different classes, namely Gumbel, Fréchet and
Weibull, depending on their asymptotic behavior, which allows one to define the
parameter γ in a similar way as in extreme value statistics, see Eq. (6.39). As above,
the Gumbel class corresponds to distributions p(x) decaying faster than any power
law (typically exponentially), the Fréchet class to distributions decaying as a power
law at infinity, while the Weibull class describes distributions behaving as a power
law close to an upper bound. The limit distributions are however different from that
obtained in extreme value statistics. Let us introduce the rescaled kth record

zk = rk − ak
bk

(6.46)
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where ak and bk are suitably chosen rescaling parameters. We denote as Rk(z) the
cumulative distribution of zk . If the distribution p(x) is in the Gumbel class (γ = 0),
the limit distribution limk→∞ Rk(z) is given by [15]

Rg(z) = �(z) (6.47)

where �(z) is the integrated normal distribution,

�(z) =
∫ z

−∞
e−y2/2dy. (6.48)

In other words, the limit distribution is simply a Gaussian (or normal) distribution.
For the Fréchet class (γ > 0), the limit distribution reads

Rf(z) = �(γ ln x), x > 0 (6.49)

thus corresponding to a (positive) lognormal distribution. Conversely, for theWeibull
class (γ < 0), the limit distribution is given by

Rw(z) = �
(
γ ln(−x)

)
, x < 0 (6.50)

which corresponds to a (negative) lognormal distribution.

6.3 Large Deviation Functions

We have already encountered the notion of large deviation form of a probabil-
ity distribution, for instance in the case of phase transitions (Sect. 1.4), reaction-
diffusion processes (Sect. 4.1), or random networks (Sect. 4.3). However, this form
only appeared as a formal property in these previous examples, and we wish to
discuss here the interest and interpretation of such a form.

6.3.1 A Simple Example: The Ising Model
in a Magnetic Field

To illustrate the notion of large deviation function and the relevance to describe
extremely rare events, let us consider a simple example, the effect of a magnetic field
h on an Ising model at high temperature, well above the ferromagnetic transition

http://dx.doi.org/10.1007/978-3-319-42340-1_1
http://dx.doi.org/10.1007/978-3-319-42340-1_4
http://dx.doi.org/10.1007/978-3-319-42340-1_4
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temperature. In this case, the coupling energy between spins can be safely neglected
with respect to the thermal energy (i.e., J/T � 1). Let us first consider the case
of a zero magnetic field (h = 0). By simply counting the configurations having a
macroscopic magnetization

m = 1

N

N∑
i=1

si (6.51)

where N is the number of spins, one obtains for the probability distribution P(m)

P(m, h = 0) ∝ e−Ncm2
(6.52)

for not too large values of m, with some constant c > 0 [see Eqs. (1.92) and (1.93)].
Hence any value m 
= 0 has a vanishingly small probability to be observed in

the thermodynamic limit N → ∞. Equation (6.52) is a simple example of large
deviation form of a distribution. More generally, a distribution function P(x) has a
large deviation form if it takes the asymptotic form, for large N ,

P(x) ∝ e−Nφ(x) (6.53)

where φ(x) is called the large deviation function, or rate function. A more rigorous
definition can be written as

φ(x) = − lim
N→∞

1

N
lnP(x). (6.54)

In this general setting, N may be the number of particles, of spins, or the volume
of the system. In the case of the paramagnetic model, Eq. (6.52) yields for the large
deviation function φ(m, h = 0) = cm2.

In the presence of a magnetic field h 
= 0, one then finds

P(m) ∝ e−Ncm2+Nhm/kT ∝ e−Nc(m−m0)
2
, m0 = h

2ckT
(6.55)

or in otherwordsφ(m, h) = c(m−m0)
2.Hence in the presence of amagnetic field, the

magnetization m0, which was extremely rare and in practice unobserved for h = 0,
becomes the typical value. Varying an external control parameter thus makes typical
a value of the observable that was extremely rare otherwise. The interest of the notion
of large deviation function therefore partly resides in this property. Characterizing
the extremely low probability of a random variable is not so interesting in itself:
whether the probability of a given event is 10−40 or 10−100 does not make much
difference, as the event will never be observed in practice. However, knowing this
very low probability enables one to predict the effect of an external control parameter
like a magnetic field, which acts as a simple exponential reweighting of the zero field
probability:

P(m, h) ∝ P(m, 0) eNhm (6.56)

http://dx.doi.org/10.1007/978-3-319-42340-1_1
http://dx.doi.org/10.1007/978-3-319-42340-1_1
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A review of the use of large deviation functions in a statistical physics context can
be found in Ref. [18].

6.3.2 Explicit Computations of Large Deviation Functions

Large deviations functions can be computed thanks to the Gärtner-Ellis theorem,
which can be (loosely) stated as follows [18]. Given a set of random variables xN
indexed by an integer N and defined over an interval (a, b), the distribution pN (x)
takes a large deviation form

pN (x) ∝ e−Nφ(x) (6.57)

if the following scaled-cumulant generating function

λ(k) = lim
N→∞

1

N
ln〈eNkxN 〉, (6.58)

with k real, exists (i.e., takes finite values) over some interval of k, possibly the whole
real axis. Then the large deviation function exists and is given by the Legendre-
Fenchel transform of λ(k),

φ(x) = sup
k

[kx − λ(k)]. (6.59)

At a heuristic level, this relation can be understood as follows, assuming the validity
of the large deviation form Eq. (6.57). To compute λ(k), one first needs to evaluate

〈eNkxN 〉 =
∫ b

a
dx eN[kx−φ(x)]. (6.60)

When k is such that the maximum x∗
k of kx−φ(x) falls within the interval (a, b), the

integral can be evaluated in the large N limit through a saddle-point approximation,

∫ b

a
dx eN[kx−φ(x)] ∼ eN[kx∗

k−φ(x∗
k )] (6.61)

leading to

λ(k) = kx∗
k − φ(x∗

k ) = sup
x∈(a,b)

[kx − φ(x)]. (6.62)
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Hence λ(k) is the Legendre-Fenchel transform of φ(x). Inverting this transform
precisely yields Eq. (6.59).

A simple application of this theorem is provided by the case of the sumof indepen-
dent and identically distributed random variables (u1, . . . , uN ) of distribution P(u).
Defining xN as the empirical mean of the variables ui,

xN = 1

N

N∑
i=1

ui, (6.63)

we can test whether the distribution pN (x) of xN takes a large deviation form. Fol-
lowing the Gärtner-Ellis theorem, we compute λ(k), yielding

λ(k) = ln〈eku〉 (6.64)

where the brackets here mean an average over the distribution P(u). The large devi-
ation function is then obtained by Eq. (6.59). For example, for an exponential dis-
tribution P(u) = e−u, we have λ(k) = − ln(1 − k) and thus φ(x) = x − 1 − ln x
(x > 0).

6.3.3 A Natural Framework to Formulate Statistical Physics

Large deviation functions turn out to be a natural language for statistical physics,
as can be already seen at equilibrium. We have seen in particular when studying
equilibrium phase transitions that the distribution of magnetization in the mean-field
Ising model takes a large deviation form

P(m) ∝ e−Nf (m) (6.65)

where f (m) is given in Eq. (1.93). This function has been seen to provide useful
information on the phase transition. This is actually another example of the useful-
ness of large deviation functions. In this mean-field case, the computation of the
large deviation function is easy (which is not the case in general as soon as there
are correlations—or interactions—in the system), thus providing a direct characteri-
zation of the phase transition. Hence determining the whole probability distribution
of events that are for most of them unobservable is actually one of the easiest ways
to compute the physically observed values. This also has the further advantage to
predict the two symmetric most probable values of the magnetization, while a direct
computation of the mean magnetization would result in an average over the two
symmetric values, hence to m = 0.

http://dx.doi.org/10.1007/978-3-319-42340-1_1
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The importance of large deviation functions in equilibrium statistical physics also
comes from the fact that basic quantities like the phase space volume �N (E) or
partition functions ZN (T) take large deviation forms

�N (E) ∝ eNs(ε), ZN (T) ∝ e−Nf (T)/kT (6.66)

showing that the entropy per degree of freedom s(ε) (with ε = E/N) and the
(rescaled) free energy f (T)/kT play the role of large deviation functions (although
in a less restricted sense than that previously introduced, since�N (E) and ZN (T) are
not probability distributions).

Turning to out-of-equilibrium situations, we have seen an example of the use of
a large deviation function in a nonequilibrium context when discussing absorbing
phase transitions as well as networks—see Chap.4. More generally, there has been
several attempts to use large deviation functions in nonequilibrium models in order
to generalize the equilibrium notion of free energy [19, 20]. Such attempts however
go much beyond the scope of the present book, and will not be discussed here.
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Appendix A
Dirac Distribution

The Dirac distribution δ(x) can be thought of as a function being equal to zero for
all x �= 0, and being infinite for x = 0, in such a way that

∫ ∞
−∞ δ(x) dx = 1. The

main interest of the Dirac distribution is that for an arbitrary function f ,

∫ ∞

−∞
f (x) δ(x − x0) dx = f (x0) (A.1)

where x0 is an arbitrary constant. In other words, once inserted in an integral, the
Dirac distribution precisely picks up the value of the integrand associated to the value
of the variable around which it is peaked.

The following property, related to changes of variables in the calculation of inte-
grals, also proves useful. Suppose one needs to compute the integral

I (a) =
∫ xmax

xmin

dx g(x) δ
(
f (x) − a

)
(A.2)

where g(x) is an arbitrary function. Such integrals appear for instance in the
computation of the probability distribution of the variable y = f (x), assuming
that the random variable x has a probability distribution g(x). However, this calcu-
lation is more general, and does not require the function g(x) to be normalized to
1, or even to be normalizable. To compute an integral such as I (a), the following
transformation rule is used,

δ
(
f (x) − a

)
=

n(a)∑
i=1

1

| f ′(xi (a))| δ
(
x − xi (a)

)
(A.3)

where x1(a), . . . , xn(a)(a) are the solutions of the equation f (x) = a over the inte-
gration interval (xmin, xmax). One thus ends up with the following expression for
I (a)
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166 Appendix A: Dirac Distributions

I (a) =
∫ xmax

xmin

dx
n(a)∑
i=1

g(x)

| f ′(xi (a))| δ
(
x − xi (a)

)
, (A.4)

leading after integration of the delta distributions to

I (a) =
n(a)∑
i=1

g
(
xi(a)

)
| f ′(xi (a))| . (A.5)



Appendix B
Numerical Simulations of Markovian Stochastic
Processes

In this appendix, we briefly describe some elementary methods to simulate Markov-
ian stochastic processes. We first describe the easiest case of discrete time processes,
and then move on to continuous time processes.

B.1 Discrete Time Processes

A discrete time Markovian stochastic process (also called Markov chain) is char-
acterized by the list of transition probabilities T (C ′|C). We assume here that the
process involves a finite number M of discrete configurations, which is often the
case in practice. Configurations can thus be labelled as (C1, . . . ,CM). To simulate
the stochastic dynamics, one needs to know how to choose a new configuration C ′
among (C1, . . . ,CM) starting from an arbitrary configuration C . The new configu-
ration C ′ has to be chosen randomly with a probability T (C ′|C). This can be done in
practice in the following way. For a given configuration C , let us define the variables
ai

ai =
i∑

j=1

T (C j |C), i = 1, . . . ,M. (B.1)

One thus has by definition aM = 1. It is also convenient to define a0 = 0. We
have for all i = 1, . . . ,M that ai − ai−1 = T (Ci |C). Drawing a random number
u uniformly distributed over the interval (0, 1], the probability that this random
number falls between ai−1 and ai is precisely T (Ci |C), the length of the interval.
Hence one simply has to determine i such that ai−1 < u ≤ ai , and to pick up the
corresponding configuration Ci . In this way, the configuration Ci is indeed selected
with a probability T (Ci |C).

An efficient procedure to find the value i such that ai−1 < u ≤ ai is to use a
dichotomic algorithm. One starts from j = E(M/2), where E(x) is the integer part
of x , and tests if a j < u or a j ≥ u. If a j < u, the correct i satisfies j + 1 ≤
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i ≤ M , and one takes as a new trial value j ′ the middle of the interval, namely
j ′ = E((M + j +1)/2). On the contrary, if a j ≥ u, the correct i satisfies 1 ≤ i ≤ j ,
and the new trial value is j ′ = E(( j + 1)/2). By iteration, one rapidly converges to
the value i satisfying ai−1 < u ≤ ai .

B.2 Continuous Time Processes

Continuous time Markovian processes are characterized by transition rates W (C ′|C),
with C ′ �= C . We assume here again that the process involves a finite number M of
discrete configurations. Starting from a given configuration C j , the questions are: (i)
what is the probability to select the configuration Ci (i �= j)? (ii) what is the time lag
τ until the jump to the new configuration Ci? The answer to point (i) is quite natural:
configurations are selected with a probability proportional to the transition rates,
meaning that the probability to choose configuration Ci starting from configuration
C j is

P(Ci |C j ) = W (Ci |C j )∑
k(k �= j) W (Ck |C j )

. (B.2)

Concerning point (ii), the time lag τ is a random variable following an exponential
distribution

p(τ ) = λ j e
−λ j τ (B.3)

where λ j is the total ‘activity’

λ j =
∑
i (i �= j)

W (Ci |C j ). (B.4)

Hence to simulate the dynamics of a continuous time Markovian stochastic process,
one has to draw a random number τ according to the exponential distribution (B.3),
and to select a new configuration i with the probability P(Ci |C j ) given in Eq. (B.2).
The procedure to select the configuration is thus very similar to the one used in
discrete time processes. The way to draw a random variable from an exponential
distribution is explained in Appendix C. The algorithm to simulate continuous time
Markovian stochastic processes is sometimes called the Gillespie algorithm.



Appendix C
Drawing Random Variables with Prescribed
Distributions

Standard random number generators provide independent and identically distributed
(pseudo-)random variables with a uniform distribution over the interval (0, 1)—
whether the boundaries 0 and 1 are included or not in the interval has to be checked
case by case for each generator. The question encountered in practical simulations
of stochastic processes is to be able to generate a random variable x with an arbitrary
prescribed probability distribution p(x), based on the uniform random number gen-
erator at hand. We describe below two methods enabling one to do so. More details
can be found for instance in the standard textbook Numerical Recipes [1].

C.1 Method Based on a Change of Variable

The simplest method is based on a change of variable. For simplicity, we assume
that the variable x is defined over an interval (a, b), where −∞ ≤ a < b ≤ +∞.
Let us define the variable

u = F(x) (a < x < b) (C.1)

with

F(x) ≡
∫ x

a
p(x ′) dx ′ (C.2)

the cumulative distribution function of x . The probability distribution of u is denoted
as P(u), and is defined over the interval (0, 1). The standard relation P(u)|du| =
p(x)|dx | connecting the distributions of u and x can be rewritten as

P(u) = p(x)

|du/dx | . (C.3)

From Eq. (C.1), we get du/dx = p(x), so that we end up with P(u) = 1. Hence
Eq. (C.1) connects a uniformly distributed variable to the desired variable x , and one
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can simply generate x by drawing a uniform random number u and computing

x = F−1(u) (C.4)

where F−1 is the reciprocal function of F . In practice, this method is useful only
when an analytical expression of F−1 is available, which already covers a number
of usual cases of interest, like exponential or power law distributions. For instance,
an exponential distribution

p(x) = λ e−λx (x > 0) (C.5)

with λ > 0 can be simulated using the change of variable

x = − 1

λ
ln(1 − u). (C.6)

Since u and (1 − u) have the same uniform distribution, one can in principle replace
(1 − u) by u in the r.h.s. of Eq. (C.6). One however needs to pay attention to the
fact that the argument of the logarithm has to be non-zero, which guides the choice
between u and (1 − u), depending on whether 0 or 1 is excluded by the random
number generator. Similarly, a power-law distribution

p(x) = αxα
0

x1+α
(x > x0) (C.7)

with α > 0, can be simulated using

x = x0 (1 − u)−1/α. (C.8)

Here again, the same comment about the choice of u or (1 − u) applies. Many other
examples where this method is applicable can be found.

When no analytical expression of the reciprocal function F−1 is available, one
could think of using a numerical estimate of this function. There are however other
more convenient methods that can be used in this case, as the rejection method
described below.

Before describing this generic method, let us mention a generalization of the
change of variable method, which as an important application allows for the simu-
lation of a Gaussian distribution. Instead of making a change of variable on single
variables, one can consider couples of random variables: (x1, x2) = F(u1, u2), where
u1 and u2 are two independent uniform random numbers. It can be shown [1] that
the following choice

x1 = √−2 ln u1 cos(2πu2),

x2 = √−2 ln u1 sin(2πu2), (C.9)
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leads to a pair of independent Gaussian random variables x1 and x2, each with
distribution

p(x) = 1√
2π

e−x2/2. (C.10)

In practice, one often needs a single Gaussian variable at a time, and uses only one
of the variables (x1, x2). A Gaussian variable y of mean m and variance σ can be
obtained by the simple rescaling y = m + σx , where x satisfies the distribution
(C.10).

C.2 Rejection Method

An alternative method, which is applicable to any distribution, is the rejection method
that we now describe. Starting from an arbitrary target distribution p(x) defined over
an interval (a, b) (wherea and/or bmay be infinite), one first needs to find an auxiliary
positive function G(x) satisfying the three following conditions: (i) for all x such
that a < x < b, G(x) ≥ p(x); (ii)

∫ b
a G(x) dx is finite; (iii) one is able to generate

numerically a random variable x with distribution

p̃(x) = G(x)∫ b
a G(x ′) dx ′ (a < x < b), (C.11)

through another method, for instance using a change of variable. Then the rejection
method consists in two steps. First, a random number x is generated according to
the distribution p̃(x). Second, x is accepted with probability p(x)/G(x); this is
done by drawing a uniform random number u over the interval (0, 1), and accepting
x if u < p(x)/G(x). The geometrical interpretation of the rejection procedure is
illustrated in Fig. C.1.

That the resulting variable x is distributed according to p(x) can be shown using
the following simple reasoning. Let us symbolically denote as A the event of drawing
the variable x according to p̃(x), and as B the event that x is subsequently accepted.
We are interested in the conditional probability P(A|B), that is, the probability
distribution of the accepted variable. One has the standard relation

P(A|B) = P(A ∪ B)

P(B)
. (C.12)

The joint probability P(A∪ B) is simply the product of the probability p̃(x) and the
acceptance probability p(x)/G(x), yielding from Eq. (C.11)

P(A ∪ B) = p(x)∫ b
a G(x ′) dx ′ . (C.13)
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Fig. C.1 Illustration of the rejection method, aiming at drawing a random variable according to
the normalized probability distribution p(x) (full line). The function G(x) (dashed line) is a simple
upper bound of p(x) (here, simply a linear function). A point P is randomly drawn, with uniform
probability, in the area between the horizontal axis and the function G(x). If P is below the curve
defining the distribution p, its abscissa x is accepted (point P1); it is otherwise rejected (point P2).
The random variable x constructed in this way has probability density p(x)—see text

Then, P(B) is obtained by summing P(A ∪ B) over all events A, yielding

P(B) =
∫ b

a
dx

p(x)∫ b
a G(x ′) dx ′ = 1∫ b

a G(x ′) dx ′ . (C.14)

Combining Eqs. (C.12)–(C.14) eventually leads to P(A|B) = p(x).
From a theoretical viewpoint, any function satisfying conditions (i), (ii) and (iii) is

appropriate. Considering the efficiency of the numerical computation, it is however
useful to minimize the rejection rate, equal from Eq. (C.14) to

r = 1 − 1∫ b
a G(x) dx

. (C.15)

Hence the choice of the function G(x) should also try to minimize
∫ b
a G(x) dx , to

make it relatively close to 1 if possible. Note that G(x) does not need to be a close
upper approximation of p(x) everywhere, only the integral of G(x) matters.
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